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ABSTRACT

In this paper, we propose a new statistical model for the re-
lationship of wavelet coef cients and its application to image
denoising. The magnitude of a wavelet coef cient usually
shows high correlations with the nearby ones. This property
has been exploited in many wavelet-based image processing
techniques. However, conventional works consider only the
local neighborhood of a coef cient when inferring its hidden
state. Consequently, the image context is not faithfully re-
ected and thus there are sometimes visually annoying arti-

facts. We attempt to alleviate this problem by developing a
new statistical model for the random eld that is consisted of
hidden variables of the overall band and thus includes global
relationship of wavelet coef cients. In this model, the im-
age context is encoded by the relations of hidden states, and
the state plane is ef ciently inferred by the sum-product algo-
rithm. In the experiment, the proposed model is incorporated
with the state-of-the-art denoising algorithm, namely BLS-
GSM (Bayes Least Square - Gaussian Scale Mixture). The
results show that the proposed algorithm suppresses many an-
noying artifacts that exist in the conventional denoising meth-
ods, and thus improves the subjective quality.

Index Terms— Conditional Random Fields, Bayesian Es-
timation, Image Denoising

1. INTRODUCTION

Wavelet transform is an ef cient tool for many image process-
ing applications such as image denoising, image compression,
and image interpolation. Several properties of wavelet trans-
form that are successfully used for these applications can be
summarized as Locality, Multiresolution, Compression, Clus-
tering, and Persistence [2]. Especially, Clustering and Persis-
tence mean high magnitude correlation between the adjacent
coef cients, which are the most important ingredients of com-
pression and denoising algorithms.

Among many wavelet based image denoising algorithms,
the BLS-GSM algorithm is known to be a state-of-the-art sin-
gle image denoising algorithm [3], which shows excellent
noise suppression performance while preserving discontinu-
ities. However, the artifacts are sometimes still annoying as
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Fig. 1. Typical artifacts of BLS-GSM. They look like wavelet
basis functions and come from the incorrect inference of hid-
den states. (a) denoised image, (b) coarse scale error (mag-
ni cation of the area in the large circle in (a)), (b) ne scale
error (magni cation of the area in the small circle in (a))

shown in Fig. 1. Like many other approaches, BLS-GSM
modeled the wavelet coef cients with the assumption of hid-
den state [1, 2]. Then the probability of each state was in-
ferred from the local observation of 9 ∼ 10 wavelet coef -
cients. The artifacts in Fig. 1 are usually caused by this “local
observation,” and thus we need to consider wider range of
hidden random eld. Actually, such consideration is widely
used in the algorithms for stereo and segmentation problems,
which are usually modeled with the local observation and
also the relationship between the adjacent sites. Moreover,
recently developed optimization techniques enable this infer-
ence of the complicated model to be tractable [4, 5, 6, 7]. To
apply these techniques in the random elds of hidden state,
we divide the hidden state so that every state has the same
probability and model the hidden state random eld based on
the Conditional Random Field (CRF) model [8], which is a
conditional version of the Markov Random Field (MRF). By
applying the BLS-GSM to the observation term in the pro-
posed model, we design a hidden state eld that naturally
considers the wider range relationship of wavelet coef cients.
Experimental results show that the proposed algorithm shows
good performance in suppressing the artifacts, while main-
taining the merits of the BLS-GSM. Although the PSNR im-
provement is very small, the improvement of subjective qual-
ity is noticeable. The proposed algorithm reduces a large
amount of the artifacts, which are the severe drawbacks of
wavelet-domain image processing techniques.
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The rest of paper is organized as follows. Section 2 de-
scribes the image denoising process and the probabilistic model.
We describe a new CRF-based model for the hidden state, and
explain the inference algorithm in Section 3. Finally, we show
some experimental results in Section 4, and conclude the pa-
per in Section 5.

2. IMAGE DENOISING

In this section, we brie y review a conventional image de-
noising algorithm and explain the proposed wavelet coef -
cient estimator that extends the conventional estimator.

2.1. Image Denoising

Image denoising can be considered as an estimation problem
given noisy observations. A two-step procedure for the de-
noising is to nd a local variance from the neighborhood of a
pixel, and then to apply local variance to the estimation prob-
lem. Such an approach is called empirical Bayesian estimator
and successfully applied to many image denoising algorithms
in the pixel domain. The approach has also been applied to
the wavelet coef cients, i.e., the wavelet coef cients are esti-
mated from neighboring ones. This method substantially im-
proves the performance because of several properties of the
wavelet transform. However, the two-step empirical Bayesian
estimator is suboptimal although the variance estimator is op-
timal. To alleviate the problem caused by suboptimality, a
single step optimal estimator is also proposed in [1]. When
only local observation is available, the single step Bayesian
estimator is the optimal. But in order to consider image con-
text and reduce the annoying artifacts, we will introduce a
single step Bayesian estimator given all observations, not just
nearby ones. For the consideration of wider range of obser-
vation, we design a random eld of hidden states and encode
their relationship into the potential functions.

2.2. Bayes Least Square Estimator

Let us denote the true wavelet coef cient eld of a given
band as a random eld X , where X consists of N site and
each random variable is denoted as Xs, i.e., X = {Xs|s =
1, 2, · · · , N}. For the statistical modeling of wavelet coef -
cient, we introduce the hidden state random variable Zs for
each site s, and denote the random eld as Z = {Zs|s =
1, 2, · · · , N} (the hidden state will be speci ed in the next
Section). The observation is denoted as Y , where it should be
noted that Y is not restricted to the observation of the given
band, but it can include other bands or even a lowpass band.
Then the denoising of each band can be considered as the
Bayes least squares (BLS) estimation of Xs, i.e., each estima-

tor is

E{Xs|Y} =
∫

Xsp(Xs|Y)dXs

=
∫ ∫

Xsp(Xs,Z|Y)dZdXs

=
∫ ∫

Xsp(Xs|Y,Z)p(Z|Y)dZdXs

=
∫

E{Xs|Y,Z}p(Z|Y)dZ. (1)

Note that the difference of our least square estimator of Xs

from the conventional ones is that the proposed estimator is
conditioned on the global observation Y , whereas the con-
ventional methods depend on local information only. That
is, the image context is naturally encoded in our model. Eq-
(1) can be further reduced by using the Markovian property,
E{Xs|Y,Z} = E{Xs|Y,Zs} :

E{Xs|Y} =
∫

E{Xs|Y,Zs}p(Z|Y)dZ

=
∫
Zs

E{Xs|Y,Zs}
∫
Z−

s

p(Z|Y)dZ−
s dZs

=
∫
Zs

E{Xs|Y,Zs}ps(Zs|Y)dZs (2)

where Z−
s is Z\{Zs} and the marginal distribution ps(Zs|Y)

is de ned as

ps(Zs|Y) =
∫
Z−

s

p(Z|Y)dZ−
s . (3)

In summary, we need to have E{Xs|Y,Zs} and ps(Zs|Y) for
the denoising, where the former term will be derived in the
later section from the GSM model in [1] and the latter term is
followed from the CRF model for joint distribution p(Z|Y).

2.3. Gaussian Scale Mixture Model

Among many statistical models for the wavelet coef cients
of natural images, the GSM is shown to provide a reason-
able basis for some applications. So we use the model in [1]
to characterize the local observation model for the wavelet
coef cients. In the GSM of [1], the coef cients from local
neighborhood form a random vector

√
zu, where z is a multi-

plier and u is a zero-mean Gaussian vector. Hence, we let the
hidden state Z as the multiplier in the GSM model, and com-
pute E{Xs|Y,Zs} from the subset of Y and the state random
variable Zs (for details see [1]).

In contrast to the GSM model, we assume explicit nite
levels (L-levels) for the multiplier. Assuming nite levels for
the multiplier enables us to use combinatorial optimization
techniques, which are shown to be very ef cient in probabilis-
tic inference [7, 4, 5]. The quantization of multiplier causes
only trivial loss, because the actual implementation of BLS-
GSM requires a numerical integration that needs quantization.
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Another problem when applying combinatorial optimization
techniques is that the density of hidden state Zs is not uni-
form, which complicates the model. In order to cope with
this problem, we use the simplest method, i.e., we nd non-
uniform quantization levels for themultiplier so that the prob-
ability of each level becomes the same. Because we use the
same assumption that log(Xs) has a constant prior as in [1],
the discrete value of Xs consists of exponential scale.

3. STATISTICAL MODELING FOR HIDDEN FIELD

In this section, we derive the joint distribution p(Z|Y) and
its marginal distribution

∑
Z−

s
p(Z|Y) (discrete version of

the Eq-(3)). Speci cally, we use a CRF for the modeling of
p(Z|Y) and a sum-product (Belief Propagation) algorithm for
the inference.

3.1. Conditional Random Field

The CRF is a powerful modeling tool since they can handle
overlapping and wide-range features, the de nition of which
is given in [8]. For two random elds Y and Z , the (Y,Z) is
a conditional random eld if

p(Zs|Y,Zt, t �= s) = p(Zs|Y,Zt, t ∼ s) (4)

where t ∼ s means t neighbors with s. Using the Hammersley-
Clifford theorem and considering the rst order neighborhood
system, the posterior probability p(Z|Y) is given by

p(Z|Y) ∝ exp

⎛
⎝−

∑
s

Vs(Zs,Y) −
∑

s

∑
t∈N(s)

Vs,t(Zs,Zt)

⎞
⎠

(5)
where N(s) is the rst-order neighborhood of the site s and
Vs(Zs,Y) re ects the information from the observation for a
single site, and two-pixel potential Vs,t(Zs,Zt) means spatial
constraints. The energy function Vs(Zs,Y) is de ned under
the assumption that it depends only on the local observation
Ys and thus

p(Ys|Zs) ∝ e−Vs(Zs,Y), (6)

which are easily derived from the the GSM model. The re-
lationship between the hidden states is designed according
to our prior knowledge that two adjacent wavelet coef cients
have large overlapping support region. That is, we can safely
assume that the adjacent wavelet coef cients have smooth
hidden state transition. This can be represented by the energy
function

Vs,t(Zs,Zt) = λ(Zs −Zt)2 (7)

where λ is a constant.

3.2. Bayesian Inference

Finally, the joint probability of the hidden random eld Z
given a Y can be represented as

p(Z|Y) ∝
∏
s

e−Vs(Zs,Y)
∏

t∈N(s)

e−λ(Zs−Zt)
2
. (8)

Also we need to compute the marginal distribution of each
random variable Zs. For a given Markov network, the belief
propagation is an iterative algorithm that estimates marginal
distribution. We use loopy belief propagation, that is, the be-
lief propagation is applied to a graph with loops. Although it
does not guarantee the global optimal solution in the case of
the graph with loops, loopy belief propagation has been suc-
cessfully applied to many problems [6]. The standard Belief
Propagation algorithm (sum-product) is de ned as [7],

mst(Zt) ←
∑
Zs

ψ(Zs,Zt)ψs(Zs,Ys)
∏

k∈N(s)\t

mks(Zs)

bs(Zs) ← ψs(Zs,Ys)
∏

k∈N(s)\t

mks(Zs) (9)

where mst is the message that node s sends to t, bs(Zs) is
the belief at the node s, and ψs(Zs,Ys) and ψ(Zs,Zt) are
called local evidence and compatibility matrix respectively (
ψ(Zs,Zt) = e−λ(Zs−Zt)

2
, ψs(Zs,Ys) = e−Vs(Zs,Y)). The

iterations of the sum-product algorithm are continued until
convergence. After iterations, we can get the marginal prob-
ability ps(Zs|Y) at the site s, and from Eq-(2) BLS estimate
of the site s is given by

E{Xs|Y} =
∑
Zs

E{Xs|Y,Zs}ps(Zs|Y). (10)

By computing the Eq-(10) for each site, we can get the de-
noised band.

4. EXPERIMENTAL RESULTS

We have tested our method on a set of images (Lena, Barbara,
Peppers) with the size of 256×256 and 512×512. The results
of BLS-GSM are obtained using the software provided by the
authors. The parameter λ in Eq-(7) is set to be 10, but it
is found that the overall performance is not sensitive to the
value of λ. In all experiments that we have performed, the
BP algorithm converges within 15 iterations regardless of the
size of the images and level.

The objective quality is measured in terms of PSNR with
various noise levels (σ = 5, 10, 15, 20, 25, 30), and it is found
that the average improvements of the PSNR are +0.01 dB,
+0.37 dB, and +0.25 dB for the above test images respec-
tively. Although the overall averaged PSNR improvement is
small, and sometimes even below zero, the improvement in
subjective quality is noticeable as demonstrated in Fig. 2. By
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Fig. 2. Subjective comparison (Each image is cropped for
visibility of the artifacts). Images in left column are the results
of the BLS-GSM and images in right column are the results
of the proposed one. (Please see the electronic version for the
best of the view)

considering neighboring relations, the proposed model can
discriminate the high state of hidden variable caused by image
context from the other kinds of high state caused by local per-
turbation. Hence, it naturally suppresses annoying artifacts.
Among many artifacts in Fig. 2, we choose 6 signi cant ones
and draw the circles on them for easy comparison. As can
be observed, the proposed algorithm reduces many artifacts
without losing the merits of the BLS-GSM. Actually, there
are ner scale errors (more than 30 in the case of Peppers
image) which are corrected by the proposed algorithm.

5. CONCLUSIONS

In this paper, we have proposed a new probabilistic model
for the wavelet coef cients, and developed a denoising algo-

rithm based on the model. Differing from the conventional
wavelet-based denoising algorithms using local information,
the proposed method considers the correlation in larger area.
Therefore the proposed algorithm can discriminate local dis-
turbance from the edges and thus yields much less artifacts
when compared with the state-of-the-art denoising algorithm.
Our model is based on the CRF and the prior assumption of
the smoothness of hidden state. By the appropriate quantiza-
tion of the parameter in this model, the well-developed op-
timization techniques could have been successfully used to
solve the given estimation problem.
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