
VIDEO DENOISING USING A SPATIOTEMPORAL STATISTICAL MODEL OF
WAVELET COEFFICIENTS

Gijesh Varghese1 and Zhou Wang2

1Mobilygen Corporation, Santa Clara, CA, USA
2Dept. of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada

Email: gijesh.varghese@ieee.org, zhouwang@ieee.org

ABSTRACT

We propose a video denoising algorithm based on a spa-

tiotemporal Gaussian scale mixture (ST-GSM) model in the

wavelet transform domain. This model simultaneously cap-

tures local correlations between the wavelet coefficients of

natural video sequences across both space and time. Bayes

least square estimation is used to recover the original signal

from the noisy observation. To further improve the perfor-

mance, motion compensation is employed before ST-GSM

denoising, where a Fourier domain noise-robust cross corre-

lation approach is proposed for motion estimation. Exper-

iments show that the performance of the proposed method

is highly competitive when compared with state-of-the-art

video denoising algorithms.

Index Terms— video signal processing, video denoising,

statistical image modeling, image restoration, motion estima-

tion

1. INTRODUCTION

Video signals are often contaminated by noise during acqui-

sition and transmission. Denoising of video is highly desir-

able, which can enhance perceptual quality, increase com-

pression effectiveness, facilitate transmission bandwidth re-

duction, and improve the accuracy of the subsequent feature

extraction and pattern recognition processes.

Most video denoising algorithms proposed in the lit-

erature consider additive white Gaussian noise and can be

roughly categorized into pixel domain and transform do-

main methods. Pixel domain denoising is usually done with

weighted averaging within local 3D windows, where the

weights can either be fixed or adapted based on the local

image content. Improved results are obtained by applying

weighted averaging after motion compensation, so that tem-

poral correlation is taken better into account. A review of

pixel domain method can be found in [1].

Transform domain methods first decorrelate the video sig-

nal using a linear transform, and then denoise the signal in the

transform domain (e.g., by soft/hard thresholding, maximum

likelihood estimation, or Bayesian estimation), followed by

an inverse transform that brings the signal back to the pixel

domain. Motion information or temporal correlations may be

incorporated into the algorithms by employing an advanced

or adapted transform [2,3] or by using an advanced statistical

model that reflects the joint distributions of wavelet coeffi-

cients over space and time [4–6]. Recursive filtering method

has also been proposed to filter the wavelet coefficients along

the estimated motion trajectories [7].

The interest in statistical image modeling has been grow-

ing steadily in recent years. Here we are specifically inter-

ested in the Gaussian scale mixture (GSM) model, which was

originally proposed in the statistics literature and has recently

been applied to the modeling of static natural images [8].

Indeed, it was found to be both effective and convenient in

describing the marginal and joint statistics of wavelet coeffi-

cients. Bayesian estimation method based on the GSM model

has also been developed for the denoising of still images, and

has achieved superior performance [8].

In this paper we extends the general GSM idea for the

modeling and denoising of video. In particular, we propose

to use a spatiotemporal GSM (ST-GSM) model that simulta-

neously captures local correlations between the wavelet co-

efficients of natural video sequences across both space and

time. Moreover, we find that applying a motion compensa-

tion process beforehand can further improve the performance

of ST-GSM based denoising. We have also developed and

incorporated a new noise-robust motion estimator for motion

compensation.

2. METHOD

2.1. Denoising Based on GSM Models
A random vector x is a GSM if it can be expressed as the

product of two independent components:

x =
√

zu, (1)

where u is a zero-mean Gaussian vector, and z is called a

mixing multiplier. The density of x is then given by:

px(x) =
∫

1
[2π]N/2|zCu|1/2

exp(−xT (zCu)−1x
2

)pz(z)dz

(2)
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where Cu is the covariance matrix of u, pz(z) is the mixing

density, and N is the size of the vector x. It has been found

that a GSM model can well account for 1) the marginal dis-

tributions of the wavelet coefficients computed from natural

images, and 2) the strong correlations between the amplitudes

of neighboring wavelet coefficients [8].

Now assume that x is a vector of neighboring wavelet co-

efficients of the original image, then a noise corrupted coeffi-

cient vector y can be written as

y = x + w =
√

zu + w , (3)

where w is an additive Gaussian noise coefficient vector with

a covariance matrix Cw (here we have assumed that the orig-

inal noise contamination in the image domain is additive in-

dependent Gaussian). The group of neighboring coefficients

constitute a sliding window that moves across the wavelet

subband. At each step, only the center coefficient of the win-

dow is estimated (i.e., denoised). Therefore, the objective

here is converted to estimating the center coefficient xc of x,

given the noisy observation y.

The Bayes least square (BLS) estimator is simply the con-

ditional mean, which can be computed by [8]

E{xc|y} =
∫ ∞

0

p(z|y)E{xc|y, z}dz . (4)

On the right hand side, E{xc|y, z} is linear based on the facts

that w is Gaussian and x is also Gaussian when conditioned

on z. The posterior density of p(z|y) can also be estimated

by Bayes’ rule, provided that the prior pz(z) of the multiplier

is given. The integral in Eq. (4) is evaluated with a 1D nu-

merical integration. More implementation details as well as

further discussions can be found in [8].

2.2. Spatiotemporal GSM denoising
The general approach of GSM denoising described above

can have many variations, depending on how the neighbor-

ing wavelet coefficient vector is formed. Since natural video

signals have strong correlations between adjacent frames, it

is useful to include temporal neighborhood coefficients in

the vector. In addition, when the adjacent frames are prop-

erly aligned, the temporal correlation becomes even stronger.

Therefore, we apply motion compensation before the for-

mation of the neighboring wavelet coefficient vector and the

subsequent ST-GSM denoising process.

The diagram of the proposed denoising algorithm is illus-

trated in Fig. 1. The denoising of the current frame involves

not only the frame itself, but also a set of adjacent past and

future frames. Motion estimation is performed between the

current frame and the past/future frames. The estimation re-

sults are then used for motion compensation (simply by spa-

tial translation). Wavelet transform is then applied to the cur-

rent frame as well as the motion compensated past and future

frames. Next, wavelet coefficient vectors are formed from
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Fig. 1. Diagram of the proposed algorithm.

a spatiotemporal neighborhood, and an ST-GSM denoising

method similar to the BLS estimator discussed earlier is em-

ployed. Finally, an inverse wavelet transform is applied to the

denoised wavelet coefficients and a denoised current frame is

created.

One of the challenges in the implementation of the above

algorithm is to estimate motion in the presence of noise. Here

we propose a simple but reliable noise-robust cross correla-

tion method for global motion estimation at integer pixel pre-

cision (i.e., a single translation by an integer number of pix-

els for an entire frame). The use of global and integer-pixel

motion estimation avoids interpolation operations in the mo-

tion compensation process, which may change signal/noise

statistics and severely affect the adequacy of the signal/noise

models as well as the denoising estimator.

Let f1(x, y) and f2(x, y) represent two image frames,

between which a motion vector is to be estimated. The

2D Fourier transform of an image frame is expressed as

F (ω1, ω2) = F {f(x, y)}, where F denotes the Fourier

transform operation. In the standard cross correlation based

approach, the motion vector can be estimated by finding

the peak of the cross correlation function [9], which can be

computed efficiently using a Fourier transform approach:

hCC(u, v) = F−1 {Y (ω1, ω2)} (5)

where Y (ω1, ω2) = F1(ω1, ω2)F ∗
2 (ω1, ω2). This method is

optimal when the image frames are noise-free. Neverthe-

less, in our application, only the noisy frames are available.

Since natural image signals have significant energy concen-

tration at low frequencies and the noise spectrum is flat,

the signal-to-noise ratio at high frequencies is much lower.

Therefore, we propose a noise-adapted approach that matches
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(a) original image frame
PSNR = Inf., SSIM = 1

(d) still GSM denoised
PSNR = 36.36dB, SSIM = 0.916

(c) Wiener2 denoised
PSNR = 29.53dB, SSIM = 0.604

(b) noisy image frame
PSNR = 22.15dB, SSIM = 0.208

(e) IFSM denoised
PSNR = 33.57dB, SSIM = 0.808

(h) Proposed ST-GSM denoised
PSNR = 38.63dB, SSIM = 0.937

(g) 3DSWDCT denoised
PSNR = 36.38dB, SSIM = 0.906

(f) WRSTF denoised
PSNR = 34.78dB, SSIM = 0.849

Fig. 2. Denoising results of Frame 80 in “Miss America” sequence corrupted with a noise standard deviation σ = 20.

the non-uniform distribution of signal-to-noise ratios across

the Fourier spectrum. In particular, the motion vector is

estimated as the peak position (u0, v0) in the following noise-

robust cross correlation function:

hNRCC(u, v) = F−1

{
Y (ω1, ω2)

(
1 − |W (ω1, ω2)|2

|Y (ω1, ω2)|
)}

,

(6)

where W (ω1, ω2) is the noise spectrum (flat for white noise).

Note that this function converges to the standard cross corre-

lation function when the images are noise-free.

After motion compensation, each frame is decomposed

using the steerable pyramid [10], a redundant wavelet trans-

form that avoids aliasing in subbands. The noisy wavelet co-

efficient vector y at a particular position in a subband is then

formed from a window of size N = N1 × N2 × Nf , where

N1 and N2 are the spatial dimensions, and Nf is the number

of frames involved. In our implementation, N1 = N2 = 3
and Nf = 9 (i.e, 4 past, 1 current and 4 future frames). As-

suming that the noise standard deviation is given, the covari-

ance matrices Cw and Cu (both of size N2) for each subband

are estimated from an noise image and the data, respectively.

Similar BLS estimation process as in Section 2.1 can then be

used to denoise the center coefficient of the current frame.

Note that since the noise added to each frame is independent,

the cross-terms in Cw between any pair of coefficients reside

in different subbands are zero. By contrast, the same terms in

Cu can be significant because of the strong temporal correla-

tions in the video signal. We regard this as the key reason that

distinguishes signals from noise (in a statistical sense) and

leads to the major improvement of ST-GSM over intra-frame

denoising approaches.

3. RESULT
The proposed ST-GSM denoising algorithm is tested with five

standard video sequences (“Tennis”, “Garden”, “Salesman”,

“Miss America” and “Foreman”) contaminated with additive

white Gaussian noise. For easy comparison with existing al-

gorithms, the noise standard deviations are chosen to be 10,

15 and 20, respectively, and only the results of the luminance

(Y) channel are reported. We have compared the proposed al-

gorithm with state-of-the-art video denoising algorithms, in-

cluding WRSTF [7], SEQWT [6], 3DWTF [2], IFSM [5], and

3DSWDCT [3]. To better place the performance evaluation in

the context, we have also included three baseline algorithms,

which are 1) Wiener2D: MATLAB’s Wiener2 function ap-

plied on a frame-by-frame basis; 2) Wiener3D: a simple ex-

tension of Wiener2 to 3D, with a window size of 3 × 3 × 3;

and 3) still GSM: static image GSM denoising [8] applied on

a frame-by-frame basis. The denoising results for WRSTF [7]

and 3DWTF [2] were obtained from the processed sequences

available at [12], and the rest of the results were computed by

ourselves.

Peak signal-to-noise ratio (PSNR) and the structural simi-

larity (SSIM) index [11] are used to provide quantitative eval-

uations of the algorithms. The latter has shown to be a better

indicator of perceived image quality [11]. In Fig. 2, a de-

noised frame using different denoising algorithms is extracted
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Table 1. PSNR and SSIM [11] comparisons of video denoising algorithms.
video sequence Foreman Salesman Miss America Tennis Garden

noise std (σ) 10 15 20 10 15 20 10 15 20 10 15 20 10 15 20

PSNR Results

Wiener2D 33.14 30.46 28.55 31.97 29.51 27.80 34.51 31.64 29.56 31.07 28.55 26.78 29.73 26.77 24.80

Wiener3D 29.54 29.26 28.87 29.59 29.30 28.88 36.95 35.60 34.06 22.88 22.81 22.71 18.36 18.33 18.29

WRSTF [7] 35.48 33.37 31.82 35.54 33.56 32.00 37.82 36.17 34.79 33.68 31.35 29.71 30.59 27.95 26.13

SEQWT [6] NA NA NA 32.86 30.59 29.02 NA NA NA 31.19 29.14 27.59 29.30 26.43 24.38

3DWTF [2] NA NA NA 34.96 33.33 32.03 NA NA NA 31.96 29.91 28.56 30.25 27.70 25.95

IFSM [5] 34.13 31.98 30.50 34.22 31.85 30.22 37.52 35.41 33.86 32.41 30.10 28.56 30.05 27.25 25.40

still GSM [8] 35.05 33.10 31.70 33.80 31.73 30.28 38.52 37.14 36.14 31.82 29.87 28.65 30.40 27.65 25.76

3DSWDCT [3] 36.17 34.46 33.07 36.98 35.12 33.75 38.87 37.72 36.74 33.83 31.79 30.50 31.80 29.40 27.70
Proposed 36.74 34.98 33.72 38.04 36.03 34.61 40.57 39.40 38.50 34.05 31.97 30.59 31.48 29.08 27.49

SSIM Results

Wiener2D 0.860 0.774 0.694 0.859 0.778 0.704 0.818 0.704 0.602 0.813 0.712 0.625 0.916 0.853 0.792

Wiener3D 0.865 0.839 0.808 0.839 0.818 0.786 0.907 0.868 0.808 0.577 0.560 0.539 0.510 0.500 0.488

WRSTF [7] 0.914 0.877 0.841 0.932 0.901 0.868 0.908 0.877 0.846 0.897 0.839 0.790 0.953 0.922 0.889

SEQWT [6] NA NA NA 0.900 0.846 0.796 NA NA NA 0.842 0.772 0.716 0.941 0.893 0.842

3DWTF [2] NA NA NA 0.923 0.903 0.882 NA NA NA 0.856 0.793 0.740 0.909 0.872 0.840

IFSM [5] 0.886 0.836 0.793 0.904 0.851 0.801 0.904 0.857 0.812 0.855 0.776 0.709 0.927 0.882 0.837

still GSM [8] 0.916 0.889 0.867 0.909 0.865 0.825 0.936 0.922 0.913 0.831 0.758 0.711 0.939 0.899 0.857

3DSWDCT [3] 0.932 0.907 0.884 0.955 0.930 0.905 0.946 0.928 0.909 0.894 0.834 0.790 0.959 0.931 0.900
Proposed 0.937 0.917 0.901 0.960 0.941 0.923 0.952 0.943 0.936 0.894 0.841 0.797 0.950 0.925 0.900

from the “Miss America” sequence. It can be observed that

the proposed ST-GSM algorithm is quite effective at remov-

ing the noise while maintaining the edge and texture details of

the image. More comparisons are shown in Table 1, where the

proposed method gives the best performance in most cases.

4. CONCLUSION

We propose an ST-GSM model for natural video signals and

use it for video denoising. We find that applying motion com-

pensation before ST-GSM denoising is effective in further

improving its performance. A Fourier domain noise-robust

method is proposed to provide reliable motion estimation in

the presence of noise. Experiments with a set of standard

video sequences contaminated with additive white Gaussian

noise show that the proposed denoising algorithm is highly

competitive in terms of both PSNR and SSIM evaluations

when compared to state-of-the-art methods.
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