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ABSTRACT 

Text in video sequences can provide key indexing information. In 
particular, videotext is rich in named entities (NEs) and detection 
of such entities is critical for search applications. Traditional 
approaches for detecting NEs in OCR output look for these NEs in 
the single-best recognition results. Due to inevitable presence of 
recognition errors in the single-best output, such approaches 
usually result in low recall. Given that a lattice is more likely to 
contain the correct answer, we explore NE detection from character 
lattices produced by our videotext OCR system. Furthermore, we 
use an approximate match criterion that allows insertion of 
punctuations during lookup. Experimental results show a 50% 
relative improvement in NE recall using lattices over exact lookup 
in the 1-best hypothesis. Since the improvement in recall is 
accompanied by a large number of false positives, we present 
techniques for reducing false alarms. In addition, we describe 
efficient techniques for reducing the time for detecting NEs. 

Index Terms— Optical Character Recognition, Hidden 
Markov Models, Videotext, Named Entities, Character Lattices

1. INTRODUCTION 

In the modern world, video is an increasingly important source of 
information, and the volume of collected multimedia data is 
expanding at a tremendous rate. Video is a content-rich medium, 
with content descriptors including speech transcripts, overlaid and 
scene text, closed captions, and embedded faces. In particular, text 
in video sequences provides key indexing and interpretation 
information in several application areas [1,2]. 

The first step in indexing video based on text is to recognize it. 
In [2], we had presented a hidden Markov model (HMM) based 
system for recognizing overlaid text in broadcast news videos. In 
this paper, we extend the work presented in [2] to extract relevant 
metadata for searching videos. Specifically, we focus on extraction 
of a pre-defined set of named entities (NEs) in videotext. Named 
entities have been widely used to index audio[3,4], however, to the 
best of our knowledge, NE extraction from videotext has never 
been explored. 

Many attributes of videotext, such as low resolution, interlace 
shear, compression artifacts, and motion blur make the recognition 
of videotext a challenging task. As a result, the 1-best recognition 
output usually contains a significant amount of errors. 
Consequently, a mere lookup of the exact NE string in the 1-best 
hypothesis fails to detect NEs in a large fraction of videotext.  

In this paper, we explore use of character lattices from the 
videotext OCR system for improving detection of NEs. We also 
compare exact string lookup with a softer match criterion that 
allows insertion of punctuation characters while looking up the NE 
in the 1-best or the lattice. Although approximate match on 

character lattices results in significant improvement in recall, it 
comes with an associated cost of increased number of false 
positives. Therefore, we investigate novel rejection techniques for 
reducing false alarm rates. We conclude with initial exploration of 
speed-ups for reducing the time for detecting named entities. 

2. OVERVIEW OF HMM BASED VIDEOTEXT OCR 

Our videotext OCR system is a customized version of the HMM 
based BBN Byblos OCR [2] system developed for recognizing text 
in printed documents. The BBN Byblos OCR system can be 
subdivided into two basic functional components: training and 
recognition. Both training and recognition share a common pre-
processing and feature extraction stage. The pre-processing and 
feature extraction stage starts off by first deskewing the scanned 
image and then locating the positions of the text lines on the 
deskewed image. Next, the feature extraction program computes a 
feature vector, which is a function of the horizontal position within 
the line. First, each line of text is horizontally segmented into a 
sequence of thin, overlapping steps. For each frame we then 
compute a script-independent, feature vector that is a numerical 
representation of the frame. 

Each character in the OCR lexicon is modeled using a multi-
state, left-to-right HMMs. Each state has an associated output 
probability distribution over the features. The character HMMs are 
trained on transcribed text lines using the Expectation 
Maximization (EM) algorithm.  Note that the model topology 
including number of states, and allowable transitions is typically 
optimized for each script.  

The language model (LM) used in the BBN Byblos OCR 
engine is a character or word n-gram LM estimated from the 
character HMM training data and other available sources of text. 
The recognition engine performs a two-pass search. The first pass 
uses a bigram LM to generate a lattice of characters or words. The 
second pass uses a trigram LM and optionally more detailed 
character HMMs to generate a 1-best hypothesis, N-best 
hypotheses, or a lattice. 

The key modification to the BBN Byblos OCR engine for 
recognizing videotext is in the pre-processing of videotext images. 
The pre-processing of videotext involves two key steps. The first 
step is to upsample the videotext region by a fixed factor. The 
upsampling is performed to mitigate the effect of low resolution of 
videotext. The second step is to binarize the color text images into 
black text on white background or vice-versa, depending on the 
text and background characteristics.  

Following binarization, we extract the same set of features from 
videotext as for machine-printed OCR [4]. Next, the two-pass 
recognition strategy described earlier is used to recognize all I-
frames for text regions in a development set. Then, we empirically 
determine the I-frame that results in lowest character error rate 
(CER). On a validation set as well as for the runtime system, the 
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Search Source #Recall Recall (%) # FA 
Exact 1-Best 215 51.7 34 

 100-Best 290 69.7 86 
 Lattice 308 74.0 916 

Approx 1-Best 245 58.9 4 
 100-Best 306 73.6 131 
 Lattice 322 77.4 1135 

Table 1: NE recall performance from using exact and 
approximate search in the 1-Best, 100-Best and decoder lattice

recognition result from the empirically determined lowest CER I-
frame is used for evaluating performance.  

3. VIDEOTEXT OCR CORPUS 

The results reported in this paper are performed on overlaid 
videotext data collected from English Broadcast News videos.  For 
our experiments we used the TDT-2 corpus of CNN and ABC 
news broadcasts recorded in 1998. We annotated text region 
boundaries and frame spans manually. Each text region consisted 
of a single line of text with possibly multiple words. A single 
transcription ground truth value was assigned to each text region. 
Approximately 7 hours of video each from CNN and ABC was 
manually annotated. All text was annotated except for the moving 
text crawler in the CNN videos.  

The text density in CNN was significantly higher for CNN than 
for ABC: 6.6 text regions per frame versus 2.1 text regions per 
frame. The corpus therefore contained significantly more CNN text 
data. Specifically, for CNN we annotated 16,719 text regions and 
for ABC 5,567 text regions were annotated. We held out a fair 
development set of 871 regions for CNN and 475 regions for ABC 
– none of the regions in the development set were included in the 
training set.  

4. NAMED ENTITY LOOKUP USING LATTICES 

Spotting the occurrence of known or pre-defined named entities in 
electronic text data is a straightforward task. In contrast, spotting 
such occurrences in automatically generated transcriptions of 
speech data or videotext data is complicated due to the inevitable 
presence of errors in the transcriptions. While N-best lists can 
increase the accuracy of name spotting, they suffer from the 
drawback that if one portion of a multi-word named entity is 
correctly recognized in one of the N hypotheses and the remainder 
is correctly recognized in a separate hypothesis, then the spotting 
algorithm does not have access to the entire correct hypothesis 
even though the required information is contained within the N 
best. Character lattices provide a way to overcome this limitation 
without limiting the vocabulary size.  

While looking up a NE in a character lattice, we are essentially 
looking for a path in the lattice with the sequence of characters 
comprising of the NE of interest. We used the depth-first traversal 
technique to lookup the NE in the lattice. Our first experiments for 
lookup used an exact string match criterion. However, analysis of 
the recognition errors revealed that a significant fraction of errors 
occur due to punctuation insertions. If we were to perform exact 
search on a lattice with too many such insertions, the lookup is 
likely to fail in detecting NEs for a large fraction of text region. 
Therefore, to improve the recall, we implemented a soft match 
criterion (referred to as “approximate” match). In approximate 
match, we ignore a pre-defined set of “do not care” characters 
while searching for a NE in the lattice. 

In Table 1, we compare the NE recall performance using the 
exact and the approximate search for three different sources of 
data: 1-Best hypothesis, 100-Best hypotheses, and decoder lattice. 
We manually identified a list of 306 named entities of interest for 
comparing performance. There were 415 instances of these named 
entities in 1336 text regions. 

The 1-best, 100-best, and character lattices were generated 
using a character tied-mixture HMMs trained on 22K text regions 
in the training data. For each text region in the training corpus, we 
included 5 uniformly selected instances for character HMM 

estimation. This was done to increase the coverage of different 
types of distortions that manifest themselves over the lifetime of a 
text region. All training images were binarized using a threshold 
on pixel intensity. This threshold was chosen to be 80th percentile 
for high intensity text and 20th percentile for low intensity text. A 
trigram character LM was estimated from the same training data. 
Including the punctuations and numerals, the recognition lexicon 
consisted of 86 characters. Each character HMM had an associated 
512 Gaussian mixtures for modeling the output feature distribution 
at each state. Decoding the 5th (or last) I-frame results in the best 
performance on the test data. The character error rate (CER) of the 
1-best hypothesis for the 5th I-frame instance was 16.6%. 

As shown in Table 1, the %Recall using character lattices 
improves to 50% using approximate match on the lattice compared 
to the exact match using 1-Best. 

5. REDUCING FALSE ALARMS 

From Table 1, we observe that as we search for NEs in larger sets 
of hypotheses as in character lattices, we not only increase the 
number of recalled NEs but also increase the number of false 
accepts (FA). The number of FAs grow exponentially with a linear 
increase in the number of recalled NEs in going from 1-Best to 
100-Best and finally to lattices. Therefore, the task of NE rejection 
is critical for any NE based application.  

In speech recognition, posterior probabilities have been shown 
to be effective in rejecting out-of-vocabulary (OOV) words. We 
use the same principle for reducing false alarms in NE lookup. In 
our approach, we used character posteriors as features for 
classifying recalled NE from falsely accepted NE. The classifier is 
based on comparing an objective function against a configurable 
threshold for trading-off false alarms versus false rejects. Any NE 
hypothesis whose objective function evaluates to value higher than 
the threshold is accepted or else rejected.  

We explored three different objective functions for rejecting a 
NE based on set of posterior features {pi}. The set of posterior 
features are the character/arc posteriors of NE derived from the 
character lattice: 

1. Minimum, i.e., o({pi}) = min({pi}) 
2. Average, i.e., o({pi}) = average({pi}) 
3. Median, i.e., o({pi}) = median({pi}) 
The receiver operating characteristics (ROC) curves in Figure 1 

illustrate the rejection performance of the three objective functions 
using lattice based lookup with approximate match criterion. From 
the ROC curves in Figure 1, we see that overall, the performance 
of the Average objective function is better than the Median and the 
Minimum objective functions. However, the Minimum objective 
function is significantly better than the Median in regions of low-
FA but worse than the Median objective function for high-FA. For 
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Source  #TD TD (%) # FA 
Lattice 0.00 322 79.3 1135 
Lattice 0.10 317 76.2 129 
Lattice 0.50 287 66.7 12 
Lattice 0.73 248 62.0 4 
1-Best 0.00 245 58.9 4 

Table 2: Sample operating points on the ROC curve generated 
using the Average objective function. 

very high-FA, the performance of all the three objective functions 
is comparable.  

In Table 2, we show operating points on the ROC curve 
generated using the Average objective function. We compare NE 
lookup in 1-best and lattices. For each sample point, we list the 
threshold, , the true detects, and the false accepts. From this table, 
we see that by increasing the threshold, we can significantly reduce 
the number of false accepts while retaining most of the recalled 

NEs. Also, for the same number of false accepts, we see that using 
lattices for NE lookup results in more number of correctly detected 
NEs compared to using 1-best hypotheses. 

6. SPEED-UPS FOR LATTICE BASED NE LOOKUP 

Searching for NEs in lattices is computationally intensive and 
hence time consuming. In this section, we discuss some of the 
techniques that we have explored to speed up search for NEs in 
significantly dense lattices. Unless otherwise mentioned, these 
speed-ups are primarily focused towards NE search using 
approximate match criterion. We also present experimental results 
comparing the trade-offs in search speed versus detection accuracy 
using these techniques. 

In the following, we describe three techniques for speeding up 
the detection process.  
6.1. Node clustering 
As mentioned in Section 4, our HMM based videotext OCR 
system uses a trigram character LM while generating character 
lattices. Consequently, a lattice with trigram LM probabilities is 
required to have many copies of nodes and arcs than would be 
necessary if lattice had unigram LM probabilities. The trigram 
probabilities are useful in computing accurate posterior 

probabilities. Once we have computed character/arc posteriors 
using the acoustic and language model scores with the forward-
backward algorithm, we can collapse multiple copies of arcs and 
nodes for the purposes of looking up NEs. In doing so, we 
essentially perform three sequential operations on the lattices: 
merge nodes, merge arcs, and prune arcs that contain a character 
which can be ignored during search.  The first two operations can 
be used to speed up the lookup with both exact and approximate 
match criteria, whereas the third stage is effective for approximate 
match only. Note that the output of the last stage is a compact 
lattice with significantly smaller number of arcs and nodes. We 
referred to this lattice as the node clustered (NC) lattice.  

6.1.1 Merging nodes 
The first step involves merging nodes with the same spatial 
position. The algorithm to merge nodes is as follows. Let {nc} be a 
set of nodes in the lattice with the same position stamp. We then 
perform the following operations for these set of nodes: 
1. Create a new node np. 
2. For each node n in {nc}, let {ai} = set of incoming arcs to 

node n, and {ao} = set of outgoing arcs from node n. 
3. Re-route each {ai} through np so that it is an incoming arc of 

node np. 
4. Re-route each {ao} through np so that it is an outgoing arc of 

node np. 
5. Delete all nodes n in {nc}. 

6.1.2 Merging arcs
The merging of nodes with the same position stamp can create 
multiple arcs between pairs of nodes with the same word label. In 
this step, we merge the multiple arcs with the same word label. The 
algorithm used to merge arcs is as follows: 

1. For each pair of connected nodes i and j: 
a. Let {aij} denote the set of arcs between any two 

connected nodes i and j.  
b. For each set {bij} in {aij} such that, for any two arcs 

p,q in {bij}, word(p) == word(q) 
i. We create a new arc, r,  between nodes i and j

such that: 
1. word(r) = word(p), p in {bij} 
2. posterior(r) =  {posterior(p) p in {bij}} 

ii. Delete all arcs p in {bij} 
c. End-for in Step b 

2. End-for in Step 1 

6.1.3 Pruning “Do Not Care” arcs
In our description of approximate match criterion in Section 4, we 
noted that all arcs with ignore characters are treated as  (null) 
arcs. As a result, we can further simplify the lattice resulting from 
the transformations described in Section 6.1.2 by replacing 
multiple “ignore” character arcs between pairs of nodes with a 
single ignore arc using the following algorithm: 

1. For each pair of connected nodes i and j
a. Let {aij} denote the set of arcs between any two 

connected nodes i and j.  
b. Let {bij} in {aij} be such that, for any arc p in {bij}, 

word(p) in ignore_list. 
c. Find arc q = argmax({posterior(p) p in {bij}}) 
d. Delete all arcs p in {bij}\q

2. End-for in Step 1 
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Figure 1: ROC curves comparing the performance of the 
three objective functions, Min, Median and Average.
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6.2. Node caching 
We mentioned in Section 4 that we use depth-first lattice traversal 
for our NE search. In performing depth-first traversal with 
approximate match criterion, it is possible to traverse a node with 
the same partial match (of a particular NE) multiple times. 
However, the partial match at any given node is going to remain 
the same, irrespective of whether we reached that node in one 
single hop from a predecessor node or multiple hops which 
included a sequence of “do not care” characters. Therefore, we 
maintain a record of the partial match at any given node in the 
lattice. Before traversing to a new node, we check to see if the 
partial match thus far has already been cached in the new node. We 
propagate to the new node only if the node has not been cached. 
After entering the node, we update the cache for future traversals. 
6.3. Lattice pruning 
The size of the lattice produced by the videotext OCR decoder 
directly impacts the lookup speed. Therefore, we also studied the 
impact of the size of the lattice produced by the decoder on speed 
and accuracy of NE lookup. The lattice size can be pruned during 
creation or after computing the posteriors using the forward-
backward algorithm.  

6.4. Experimental results 

In Table 3, we list the %true detects at different false alarms rates 
and the associated lookup time for NE detection using approximate 
match criterion with different configuration. All the three stages of 
node clustering described in Section 6.1 were performed for the 
systems that used node clustering. 

In Table 3, we show the number of recalled NEs obtained by 
sampling the ROC curve at points with false accepts (FA) equal to 
4, 10, and 131, for various speed-up configurations. FA=4 and 
FA=131 were chosen since they are sample operating points in 
terms of FAs for the oracle NE detection results in Table 1. In 
general, just performing node clustering slightly degrades recall 
performance for high-FA regions (-1.7%), improves recall 
performance in low-FA regions (+4%), and significantly (87%) 
improves overall detection speed. Its performance (both speed and 
recall) is sustained irrespective of the size of the lattice used. The 
possible reason for the improvement in low-FA recall performance 
could be one or both of the following:  

1. Increase in the total number of unique lattice paths (due 
to node clustering). 

2. Consolidation of the character (arc) posterior scores 
across lattice paths which aids in better separation 
between correctly detected named entities and false ones. 

Node caching, when used on its own, results in a very small 
degradation in recall in both low-FA and higher-FA regions, and 
results in a small improvement (20%) in overall detection speed. 
But when we perform node caching along with node clustering, the 
recall performance drops considerably in low-FA regions (-10%) 
and high-FA regions (-4.3%). The improvement in overall 
detection speed when using node clustering and node caching over 
just using node clustering is very small (17%) when used without 
pruning. On the whole, the benefits of using node caching are 
overshadowed by the disadvantages of its use, especially along 
with node clustering.  

Lattice pruning provides a lot of control over the tradeoffs 
between recall performance and overall detection speed. 
Aggressively pruning the lattice tends to slightly improve low-FA 
recall performance (1%), degrade recall performance in higher-FA 

regions (-4.7%), while improving overall detection speed (50%-
87% depending on how aggressively the lattice is pruned). But the 
real gains from using lattice pruning are seen when it is combined 
with node clustering – there is an overall improvement in low-FA 
recall (4%) while maintaining the earlier degradation in higher-FA 
recall (-4.7%), but providing a significant improvement in overall 
detection speed (94.4%). 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we demonstrated significant improvements in recall 
of named entities by using character lattices instead of 1-best 
hypotheses. We also compared different objective functions based 
on character posteriors for rejecting false positives. Recognizing 
the need for fast detection, we developed several techniques for 
improving detection speed. In particular, the combination of node 
clustering and moderate lattice density resulted in best trade-off 
between speed and accuracy. 

The focus on this paper was on detecting pre-defined or known
entities. Future work will address detecting new or unknown
entities. Given videotext regions tend to be short, algorithms based 
on long-term context for detecting new NEs are unlikely to result 
in high recall. Therefore, we will explore linguistics cues to detect 
unknown named entities. 
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Recall (%) NCl NCa Pr 
FA=4 FA=10 FA=131 

f(%)

No No 59.6 66.8 76.2 0.0 
Yes No 62.0 65.6 76.2 87.6 
No Yes 58.9 65.4 76.2 20.5 
Yes Yes 

D
en

se
 

53.8 63.9 76.2 89.7 
No No 60.1 67.8 72.6 50.8 
Yes No 62.0 67.5 72.6 94.4 
Yes Yes Sp

ar
se

 

57.2 65.9 72.6 94.8 

Table 3: Table comparing the speed performance and detection 
performance of different system configurations. NCl: Node 
clustering, NCa: Node Caching, Pr: Lattice size, FA: false 

accept, f: Speed improvement 
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