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ABSTRACT

We analyze the sub-optimality of traditional greedy active learning
based relevance feedback methods in image retrieval, and propose
a novel active learning approach to query labels of multiple images
together, which minimize the needed round of feedbacks and achieve
satisfactory result in a near optimal manner. Our experiments on real
image retrieval demonstrate that our solution can yield comparable
precession/recall rate by significantly less relevance feedbacks.

Index Terms— Active learning, relevance feedback

1. INTRODUCTION

1.1. Overview

How to relate low level visual features to high level semantic con-
cepts in multimedia retrieval problems has long been a hot research
topic [1]. Most efforts that have been made in multimedia retrieval
focus on bridging the “semantic gap” between low-level features and
human perceptions [2]. Short term relevance feedback was intro-
duced as a main break through [3, 2], which presents several images
to the users and asks them to label whether the images are “relevant”
or ”irrelevant”. The algorithm improves its performance based on
the labeled data obtained.

The performance of relevance feedback highly depends on the
training data, especially on its ability to represent the query concept.
However, it is unwise to ask the user to label too many images, thus
it is crucial for a relevance feedback algorithm to select fewer images
for user to label while obtaining more information.

Recently, many active learning methods [4, 5] have been intro-
duced to the image retrieval community [6]. By trying to optimize a
certain objective function, these methods suffer from three disadvan-
tages: The objective functions of these methods are always difficult
to optimize. Greedy method is commonly unavoidable, but far from
satisfactory, since they tend to be trapped into local minima and fail
to find the target concept. Moreover, active learning methods need
to be generalized to be able to query multiple queries at one time
to fit in the commonly accepted relevance feedback scenario, which
is difficult for traditional algorithms. Besides, high computational
complexity is also one of the barriers which keep most of the algo-
rithms away from being used in real relevance feedback processes.

This paper proposes to improve the relevance feedback by mul-
tiple queries active learning, and provides a novel solution to design
optimal query mechanisms to leverage user’s effort most efficiently.
We can provide user the most informative examples to label in ac-
ceptable computational complexity, thereby enhance the user expe-
rience by getting better retrieval results in fewer rounds of feedback.

1.2. Previous Work

One of the early applications of active learning algorithms to image
retrieval is the one based on support vector machine (SVM), as pro-
posed in [6]. It analyzes the structure of the version space of SVM,
and seeks the samples that are closest to the classifier hyperplane and
queries their labels. If more than one sample can be queried in one
batch, it uses a greedy method called Simple margin to query images
which are closest to the SVM hyperplane [7].

The main problem of these approaches is sub-optimality. They
assume that the SVM solution is at the center of the version space,
which is not always true, as discussed in [8]. Also, if all images in a
batch are chosen to be the closest to the SVM hyperplane, they can
be highly redundant and lack of variety. In the discussion of [9], it is
demonstrated that active learners based on greedy optimization tend
to be trapped into local minima so badly that they can rarely discover
the structure of the data if no sample from that region is presented in
the initial training stage.

To solve the sub-optimality issue, there are basically three cate-
gories of approaches.

Some researches try to balance the exploration and exploitation
ability of active learners [10], or incorporate diversity when selecting
the samples [11] to attack the sub-optimality problem. However,
these algorithms are mostly based on heuristic intuition, which adds
another term representing “exploration” or “diversity” to the original
objective, then get the solution by optimizing this new criterion. The
parameter to balance the new term and the original objective function
is difficult to choose for different databases. The sub-optimality of
the possible solution of the new objective function still remains.

Besides balancing approach, Steven et al. [12] propose the ap-
proximation approach to approximate the original cost function with
a submodular one, in which case greedy optimization have a guaran-
teed performance. However, since the objective function is modified,
and no theoretical guarantee of the closeness of this approximation
is provided, the performance of this approach is also not assured.

The third approach is the direct approach, represented by the
work in [13], which tries to estimate the reduction of error rate of
Naive Bayesian classifier after acquisition of the label of a sample,
and select the sample whose label will most reduce the error rate. For
many other popular and effective classifiers, such as Support Vector
Machine (SVM), whose error rate is difficult to predict, this algo-
rithm is not applicable. Query by committee (QBC) [14] is another
approach to directly reduce the size of the version space. It samples
two classifiers in the version space, and queries the label of the sam-
ple if the two classifiers disagree. This method is made applicable
by sampling methods in convex hull [15]. Since it still selects one
example each time, it cannot be easily generalized to batch mode
which is needed in image retrieval.
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1.3. Our Approach

We formulate relevance feedback problem in a general framework
which enables batch querying of labels for the need of relevance
feedback in image retrieval. Compared to balancing approaches [11,
10], our approach solve the problem systematically rather than heuris-
tically combining two terms. Compared to greedy [6], approxima-
tion [12], and direct approaches [14, 13] above, we naturally solve
the problem in batch mode with solution nearer to the optimal.

The proposed framework can be summarized as: Given image
set D including labeled images DL and unlabeled images DU , de-
note k as the number of queries, find an optimal set Q∗ in all pos-
sible sets of unlabeled images {Q|Q ⊆ DU , |Q| = k} so that after
querying the labels of each image in Q and train classifier f on new
labeled set D′

L = DL∪Q and unlabeled set D′
U = DU\Q, a certain

objective function L is minimized:

Q∗ = arg min
Q⊆DU ,|Q|=k

L
ˆ
D, D′

L, D′
U , f(D′

L, D′
U )

˜
(1)

Previous greedy optimization based algorithms [6, 7, 14] are
special cases of this framework when k is constrained to 1. The
solution space when k = 2, 3, 4... contains the whole solution space
when k = 1. With less constraint and larger solution space, this
framework is guaranteed to provide result no worse than that of the
greedy algorithm, and is more likely to get the global minima.

2. OPTIMAL RELEVANCE FEEDBACK DESIGN

We use SVM as our classifier f in Equation (1). f is a linear clas-
sifier in the feature space generated by kernel Φ and best separates
the mapped data x1, ...,xn ∈ R

d in feature space F in a largest
margin manner. f can be equivalently represented by its coefficient
ω. We neglect the bias weight b for simplicity, and assume the op-
timal hyperplane passes through the origin in F . In cases when b is
needed, it is easy to alter the kernel or input space to accommodate
[6]. A SVM can be denoted as:f(x) = ω · Φ(x) with the weight
ω =

P

i∈DL

αiΦ(xi). The summation is over all training samples,

with αi of the non-support-vector samples equal to zero.

We use the size of the SVM version space [16] as objective func-
tion L in Equation (1). Since the size of the version space is propor-
tional to the uncertainty of the classifier [6], by minimizing L, we
are actually trying to narrow down the classifier to the optimal one.

The version space of SVM is the set of classifiers f or equiv-
alently their coefficients ω that are consistent with all the training
samples in DL, and can be defined as:

V(DL) =
˘

ω| yif (xi) > 0, ∀xi ∈ DL, ‖ω‖2 = 1
¯

(2)

where yi is the label for a labeled sample xi.

We propose to directly optimize this objective, which results in
a minimum expected size of version space, thus the hypothesis can
converge to the target concept in an optimal, or near optimal speed.

2.1. Expected Reduction of Version Space

Assume that the target hypothesis ω� is in the hypothesis space. At
a certain step, the version space is V with size |V|. After labeling
k samples in Q∗, the version space becomes V ′. These k samples
corresponds to k hyperplanes in the version space, and may cut V
into J pieces Vi, with ∪

i
Vi = V,Vi ∩

i�=j
Vi = ∅.

After labels of these k samples are given, one and only one of
the sub-pieces of version space will be consistent with all the labeled

data. Suppose this sub-piece is Vj , the size of the version space will
be reduced to |Vj |.

Suppose hypotheses in version space V follow uniform distribu-
tion pH , the probability that ω� lies in Vj will be pj =

R

Vj

pHdω.

Since |Vj | = pj |V|, the expected size of the version space will be:

E
ˆ˛
˛V ′˛˛˜ = Ej [|Vj |] =

JX

j=1

pj |Vj | =

JX

j=1

p2
j |V |.

The proportion of expected size of the version space to the original

size after labeling k samples is R =
E[|V ′|]

|V | =
JP

j=1

p2
j .

Generally speaking, since
JP

j=1

pj = 1, minimizing R is equiva-

lent to making all pj as equal as possible, and making J as large as
possible. Similar conclusion has been made in [7], but since explic-
itly calculating pj and J is infeasible, the author did not figure out
an efficient way of minimizing R directly.

We propose to minimize R by directly estimating the size of the
version space. Suppose we have a query set Q = {xq

1, ..., x
q
k} and

newly labeled all the k samples in it. m classifiers C = {C1, ..., Cm}
are also uniformly sampled from version space V(D′

L). Ci(x
q
j), i =

1, ..., m, j = 1, ..., k takes value from {0, 1}.

We represent Ci = [Ci(x
q
1), ..., Ci(x

q
k)]T with ci(Q), or sim-

ply ci =
kP

j=1

Ci(x
q
j)2

j−1. It is clear that there is a bijective mapping

between Ci(Q) and ci, and they can be regarded equivalently. C is
further divided into non-overlapping sets by Sj = {Ci| ci = j},
j = 0, ..., 2k − 1 and ∪

i
Si = C, Si ∪

i�=j
Sj = ∅. Each Sj corre-

sponds to one possible piece of version space divided by samples

in Q, and p̂j =
|Sj |
m

is an unbiased estimator of pj , with its vari-

ance var (p̂j) = 1
m

pj(1 − pj) decreases inverse proportionally to
increasing m. After getting p̂j , we can estimate R with:

R̂(Q) =

JX

j=1

p̂2
j (3)

2.2. Sampling in Version Space

It is impracticable to directly sample in the high dimensional fea-
ture space F . However, we make use of the representor theory and
Kernel PCA [17] to reduce the computational burden. Suppose we
have labeled data DL and unlabeled data DU . A subset Qc ∈ DU ,
namely candidate set, is generated as candidates for labeling. A
certain Q ∈ Qc will be added to DL to form new labeled data
D′

L = DL ∪ Q, from which the new SVM can be trained.
The version space is convex because it is the intersection of |D′

L|
hyperplanes in feature space F . According to representor theory,
the hypothesis of SVM, ω, lies in the space spanned by samples

in D′
L: ω =

|D′
L|P

i=1

αiΦ(xi). As a result, we can actually sample

hypotheses in a space with much lower dimensionality (|D′
L|) than

the dimension of F .
Moreover, we do PCA in this |D′

L|-d space expanded by Φ(xi),
which is actually KPCA, to capture most of the variance in the ver-
sion space. Since the principal components approximately expand
the version space, the kernel matrix K can be approximated as:

K = UUT
(4)
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where U is a |D′
L| × dk matrix with UT U = I , dk is the dimension

that preserves sufficient variance of V .
With U as orthogonal coordinates of V trained on D′

L, sampling
in this convex hull with constraints in Equation 2 can be easily car-
ried out by common sampling methods, including Gibbs sampling,
Hit-and-run or Billiard Playing[18]. Note that results in [15] is a
special case of our method when size of Q is constrained to 1.

2.3. Multiple Queries Active Learning

Now we can evaluate the expected reduction of version space given
a new set of labeled data Q, what is left is to select the optimal Q∗

from all possible subsets of DU to reduce the size of V most. This
combinatorial optimization problem is hard to solve by brute force.

We use two strategies to drive the computational burden down:
1.Sampling. We can trade a little bit optimality for tremendous

increase in speed. Despite of enormous amount of combinations, if
we only expect the queried Q to be good enough, i.e., is top θ% of
all the combinations with confidence level δ%, the only necessity is
to sample N combinations, return the best of the them as the final
result. N can be calculated as:

N =
ln(1 − δ%)

ln(1 − θ%)
(5)

For example, if we want the result to be top 5% with confidence level
99%, we only need to try ln(1−0.99)/ ln(1−0.05) ≈ 90 combina-
tions and return best of them, which is practical in real applications.

2.Candidate Set. Label information of different samples may
contribute differently to the classifier. For SVM, it is only the support
vectors that make contribution. If we can identify support vectors
beforehand, our active learner will achieve comparable performance
with SVM having all the data labeled as its training set.

Support vectors are samples with the smallest margin. Our can-
didate set can be formed according to this prior knowledge, and we
reasonably assume that unlabeled samples with smaller margin are
more likely to become support vectors, and have higher probability
of reducing the size of version space.

In order to balance exploration and exploitation, samples that
are not “explored” should also be considered valuable, i.e., if some
dense regions of unlabeled samples are far from all the labeled data,
we might also need to put them into the candidate set.

Base on the heuristic considerations above, we give all the unla-
beled data in DU a weight score s(x) to evaluate different expected
contribution of unlabeled data. s(x) = min

xi∈DL

d(x, xi) − α |m(x)|
and transform it into a probability measure:

p(x) =
es(x)

|DU |P

i=1

es(x)

(6)

where d(x, xi) is the distance between x and xi, m(x) represents
margin of x with respect to current SVM classifier, α is a parameter
to control the contribution of two terms in the score s(x).

Note that by this criterion, we favor the sample points that either
have small margin |m(x)| (higher probability of being support vec-
tors) or are far from all the labeled samples with large min

xi∈DL

d(x, xi)

(possible representative to new unexplored data region).
Here we get Algorithm 1 to form the candidate set Qc.
With the reduced set Qc, we consider samples in a smaller set

Qc rather than DU , the computational burden can be greatly re-
duced. Our Multiple Queries Active Learning (MQActive) algorithm
as a general framework is presented in Algorithm 2. Compared to

Algorithm 1 Candidate Query Set Generation

1: Input: Labeled data DL, unlabeled data DU , SVM classifier f ,
candidate set size kc, hyper parameter α.

2: Initialize Qc = ∅;
3: For each sample xi in DU , calculate p(xi) according to Equa-

tion 6;
4: Pose prior distribution over DU with p(xi);
5: while |Qc| < k do
6: Sample x from DU according to distribution p;
7: Qc = Qc ∪ {x};
8: end while
9: Output: return Qc.

traditional query process, our algorithm provides much more proba-
bility that the algorithm converges to the global optimal solution.

Algorithm 2 Multiple Queries Active Learning (MQActive)

1: Input: Labeled data DL, unlabeled data DU , SVM classifier f ,
query batch size k, size of candidate set kc, hyper parameter δ,
θ, m, α.

2: while User is not satisfied do
3: Get query candidate set Qc ∈ DU using Algorithm 1;
4: Sample m hypotheses C = {C1, ..., Cm} in V based on

Equation 2 and 4;
5: Calculate ci(xj) for all ci ∈ C and xj ∈ Qc;
6: Calculate N using δ and θ according to Equation 5;
7: Sample N subsets Qi ⊂ Qc, |Qi| = k, i = 1, ..., N ;

8: Get Q∗ = arg max
Qi

R̂(Qi) by Equation 3, |Q∗| = k;

9: Query labels of k samples in Q∗;
10: DL = DL ∪ Q∗, DU = DU\Q∗, retrain f ;
11: end while
12: Output: Return proper samples according to f .

2.4. Computational Complexity

Random and SVMActive have smallest computational complexity.
Our algorithm is slower than those two, but much faster than KQBC
and Batch. We only need to do sampling once for a batch of query,
thus is much faster than the approach used in KQBC, where only
one sample can be acquired through one sampling process. The time
complexity of our proposal is approximately O(m), while Batch has
complexity of O(kn2), thus lacks of scalability. Here n = |D|, and
other denotations are defined above.

3. EXPERIMENT

To evaluate the method Multiple Queries Active learning (MQAc-
tive) proposed in this paper, we setup experiments on both toy and
real data sets, and compare with the results of Random Sample (Ran-
dom), SVMActive [6], Kernel Query by Committee (KQBC) [15],
and Batch Mode Active Learning (Batch) [12].

Firstly, we test the algorithm on typical toy data set Checker-
Board (Figure 1(a)). We use RBF kernel for SVM, and the parameter
is fixed as σ = 0.05. Batch size is set as k = 4. Other parameters
are set as kc = 200, δ% = 99%, θ% = 5%, m = 500, α = 1.
Average accuracy over 100 runs with standard error are shown in
Figure 1(b), from which we can see that our method outperforms
other four methods in general.
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Batch performs better at early stage, but fails to steadily improve
its performance since its criterion favors samples that have small
margin, thus its performance approaches to the performance of SV-
MActive when labeled samples keeps increasing. It is also worth
noticing that SVMActive performs almost the worst in this data set.
This is due to the greedy mechanism that focus only on the data that
near the classification boundary decided by the initial stage, which
is quite shortsighted.
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Fig. 1. Comparison on toy CheckerBoard and two real data sets.

Secondly, we conduct comparison on two real world image sets:
1. Subset of Corel gallery with 30 categories and 100 images in
each category; 2. SIVAL Image Repository with 25 categories and
60 images in each category.

Low-level image features including 64-d HSV color histogram,
9-d LUV color moment, etc., are extracted from the images. We use
Chi-square distance for histogram features, and Euclidian distance
for others. By combining different features, we get the kernel K
for SVM with parameter σ = 20, our experiments on all the active
learners are based on the this kernel. Batch size k is set as 4. Other
parameters are set the same as those in the toy experiment.

For empirical evaluation, we adopt the F1 metric which takes
into account both the precision and the recall, and defined as F1 =
2pr
p+r

, where p denotes precision and r denotes recall. Top 100 im-
ages are returned, and average F1 measures over 100 runs with stan-
dard error are shown in Figure 1(c)(d).

The results demonstrate that MQActive outperforms other ac-
tive learning methods on both data sets in image retrieval scenario.
Our method requires fewer rounds of relevance feedbacks to achieve
comparable performance as other methods, both on the easy Corel
data set and the much harder SIVAL data set. Take Corel for exam-
ple, given a required F1 of 0.35, our method needs approximately
8 labeled images, while SVMActive requires 10, Batch requires 14,
and the other two methods requires even more.

4. CONCLUSION

We attack the sub-optimality problem of traditional active learning
algorithms by directly minimizing the expected size of SVM version

space in a global optimization way. Efficient sampling and estima-
tion techniques are utilized to boost the efficiency of the algorithm
for realtime use. Experimental evaluation in image retrieval shows
that the round of relevance feedbacks needed to achieve satisfactory
retrieval performance is reduced significantly.
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