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ABSTRACT

This paper proposes a noise-resilient long-term semantic 
learning method for relevance feedback-based image 
retrieval.  Our system accommodates erroneous feedback 
resulting from the inherent subjectivity of judging 
relevance, user laziness, or maliciousness.  It also addresses 
three main drawbacks of traditional relevance feedback 
techniques.  Specifically, it uses a statistical memory 
learning method based on the user’s feedback to extract 
additional high-level semantic information between query 
and database images.  The learned semantic relationship 
automatically adds potential positive images to the feedback 
set to improve SVM-based low-level feature learning.  
These two measures are seamlessly combined to compute 
the overall similarity between query and database images.  
Our experimental results on a 6000-image Corel database 
demonstrate the effectiveness of the proposed system. 
 

Index Terms— Content-based image retrieval, long-
term semantic learning, semantic matrix, noise resilient. 

1. INTRODUCTION 
 
With the rapidly growing number of digital images, content-
based image retrieval (CBIR) has become an important 
research area.  CBIR techniques can be categorized into 
global feature-based, object/region-level feature-based, and 
relevance feedback-based.  Recently, relevance feedback 
has been widely used to bridge the semantic gap between 
low-level features and high-level semantics.  This technique 
allows the user to label the returned images as positive or 
negative.  Such labeled examples are further used to refine 
results by query updating techniques including query re-
weighting [1], query shifting [2], and query expansion [3] or 
machine learning techniques such as decision tree learning 
[4], Bayesian learning [5], SVM [6], boosting [7], etc. 

Although relevance feedback techniques can improve 
the retrieval performance, three drawbacks remain.  1) It 
cannot capture semantics by simply updating the query 
concept using low-level features.  2) It cannot achieve good 

and reliable classification learning by using a small number 
of imbalanced feedback examples.  3) It cannot remember 
the semantic knowledge obtained in the feedback processes.  
To overcome these shortcomings, long-term learning 
techniques [8-11] have been proposed to store the historical 
retrieval experiences gained by relevance feedback over 
many queries to guide the new user’s queries. These 
algorithms incorporate users’ subjectivities to provide 
semantic information.   However, the sparsity of memorized 
feedback information collected from the limited interactions 
may make long-term learning not useful for a large-scale 
database.  Erroneous feedback also leads to store incorrect 
semantic information and degrade the retrieval performance. 

To address the limitations of the current CBIR systems, 
we propose a noise-resilient long-term semantic learning 
method to extract additional semantic information.  This 
technique first gathers users’ feedback and stores the 
semantic similarity among images classified by users.  It 
then estimates the hidden semantic relationship between 
query and other images, which have not been memorized, 
using semantic transitivity and the classified positive and 
negative image sets.  These hidden semantic relationships 
are further used to expand the classified positive image set 
to improve SVM-based low-level learning.  Finally, the 
normal low-level feature-based and the learned semantic-
based similarity measures are combined to improve the 
retrieval accuracy.  A series of improvements are also 
proposed to accommodate erroneous feedback resulting 
from the inherent subjectivity of determining semantic 
relevance, user laziness, or maliciousness.  Such 
enhancements are necessary for ensuring the estimated 
semantic information is as accurate and as resilient to noisy 
feedback as possible.  The rest of the paper is as follows: 
Section 2 presents the proposed CBIR system. Section 3 
shows the experimental results to demonstrate the viability 
of our improvements.  Section 4 concludes the paper. 
 

2. PROPOSED SYSTEM 
 
The retrieval process of our proposed system is as follows:  
The user first supplies a query image q.  The system then 
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returns a specified number of images, which are classified 
by the user as either relevant or irrelevant to q.  This process 
is continued for a specified number of feedback iterations, 
or until the user is satisfied with the retrieval results.  For 
each iteration step, the system returns top images ranked by 
combining low-level feature-based and high-level semantic-
based similarity scores.  That is, the similarity between 
query q and an arbitrary image Di in the database, denoted 
as S(q, Di), is defined as:  
 ),(),(),( iHHiLLi DqSimScorewDqSimScorewDqS  (1) 
where SimScoreL(q, Di) and SimScoreH(q, Di) respectively 
measure the low- and high-level similarity scores between q 
and Di; wL and wH respectively are the contributing weights 
assigned to the low- and high-level similarity measures, and 
wL+wH =1.  In our system, a higher similarity score means 
smaller distance in terms of both low- and high-level 
features and corresponds to stronger similarity. 

Here, we define a query session as the overall iterative 
process to retrieve desired images for a query image.  We 
also define the positive feedback set P as all images 
classified as relevant by the user during a query session.  
The negative feedback set N is defined similarly. 
 
2.1. Low-Level Feature-Based Retrieval 
 
The initial retrieval is essential for facilitating quick 
learning.  We use the expanded MPEG-7 edge histogram 
descriptor (EHD) and the 64-bin HSV-based scaled color 
descriptor (SCD) to extract low-level features. The inverted 
weighted and normalized Euclidean distances between 
EHDs and SCDs of q and Di are respectively computed to 
measure SimScoreL(q, Di).  In the following iterations, the 
positive and negative feedback sets (i.e., P and N) are used 
to train a radial basis function (RBF) kernel SVM classifier.  
The normalized distance from Di to the trained separating 
hyperplane is computed to measure SimScoreL(q, Di). 
 
2.2. High-Level Semantic-Based Retrieval 
 
Our system transforms users’ relevance feedback into the 
semantic similarity among images. Three observations guide 
this transformation.  1) If two images returned in the same 
query session are both marked positive, they belong to the 
same semantic category as the query image.  2) If one 
returned image is marked positive while the other is marked 
negative, they are not semantically related.  3) If two 
returned images are marked as negative, they could be 
semantically related, just not relevant to the query image, or 
they could be in different semantic categories.  Thus, the 
semantic similarity of two images is defined as: 
                          ),(/),(),(0 jiCjiPjiSH                            (2) 
where P(i, j) denotes the number of query sessions where 
both images i and j are marked as positive and C(i, j) 
denotes the number of query sessions where both images i 
and j are returned and at least one is marked as positive. 

A semantic matrix of size M×M, where M is the total 
number of images in the database, stores the similarity 
measure for each pair of images returned in each query 
session.  Half of the cells are filled due to the symmetric 
property (for every i and j, ),(0 jiS H = ),(0 ijS H ).  Furthermore, 
this matrix is sparse since an image normally belongs to a 
few semantic categories relative to the total number of 
categories present in the image database.  An adjacency list 
stores this sparse matrix to reduce memory requirements. 

In order to learn the potential semantic relationship 
between query and other images that have not been 
memorized, we utilize semantic transitivity as well as the 
distance from each un-memorized image to the positive 
feedback set P in the estimation.  Semantic transitivity 
considers images i and k as semantically related if images i 
and j are related, and images j and k are also related.  Thus, 
our system uses all the images in P as the intermediate links 
to estimate the semantic relationship between un-memorized 
images and query q. The semantic similarity between query 
q and a database image PDi  is calculated: 
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where ),(1 PDSD iH  denotes the distance from Di to P, Pi is the 
ith image in P, and |P| is the total number of images in P.  
That is, if an image is sufficiently related to one image in P, 
it is considered related to P and therefore related to query q. 

However, this learning does not work well when the 
user incorrectly labels images during a feedback session.  
For instance, suppose that the user erroneously marks image 
k as relevant to query q and image k is semantically related 
to a set of images {i1, i2, …, in}.  Using (3), all the images i1, 
i2, …, in would be considered as semantically identical to q.  
However, since the semantic link between q and k was 
erroneous, so too is the connection between q and images i1, 
i2, …, in.  The inaccurate semantic links may be propagated 
if more erroneous relevance feedback is provided in the 
query session.  Thus, the effectiveness of the retrieval 
system will be degraded.  To counteract this degradation, 
we use the average semantic distance from all images in P 
to Di ( PDi ) to compute ),(2 PDSD iH , the distance from Di 
to P.  Thus, the basic noise-resilient semantic similarity 
between query q and Di is computed as: 
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Here, each image in P is equally weighted.  This is not 
optimal since some semantic similarities are more accurate 
than others.  For example, the semantic information between 
images i and j is more accurate if C(i, j) is larger (i.e., 
images i and j have been classified more often).  Thus, a 
weighted scheme is employed to compute the distance from 
Di to P (i.e., ),(3 PDSD iH ). The weighted noise-resilient 
semantic similarity between query q and Di is computed as: 
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where  is the weight given to images which have not been 
directly given feedback by the user. We experimentally set  
to be 0.8. 

Since some images might be more representative of the 
query semantic concept than others, we further estimate the 
representative strength of each image Pi in P.  This strength 
is computed as the average similarity for any image to the 
remaining images in P.  That is, for every image PPi , its 
representative strength is computed as: 
                       1
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The representative strength-based weighted noise-resilient 
semantic similarity between query q and Di is computed as: 
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where ),(4 PDSD iH
 computes the distance from Di to P using 

the representative strength-based weighted scheme. 
 
2.3. Incorporating the Negative Feedback Set 
 
Negative feedback is incorporated into our system since it 
contains information about the irrelevant features.  Similar 
techniques are employed to calculate the distance from any 
database image Di ( NDi ) to N.  That is, dual operations 
of equations (3)-(7) are used to compute a series of 

),(),,(),,( 321 NDSDNDSDNDSD iHiHiH  and ),(4 NDSD iH .  The final 
semantic similarity between q and Di is updated as: 
    4,3,2,1,),(),(),,(max),( 0 kNiSDPiSDDqSDqFS k
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This computation ensures an image, which is semantically 
similar to P and not semantically similar to N, is considered 
as more semantically similar to q.  The high-level semantic-
based similarity score SimScoreH(q, Di) in (1) is computed: 
        4,3,2,1),,(),( orkDqFSDqSimScore i

k
HiH          (9) 

where k=4 achieves the best retrieval performance and k=1 
achieves the worst retrieval performance. 
 
2.4. Automatically Expanding the Positive Feedback Set 
 
One of the drawbacks of traditional relevance feedback 
techniques is the imbalance of feedback sets.  That is, there 
are typically more negative than positive feedback 
examples.  This issue makes SVM-based classification 
learning less accurate and reliable.  To address this problem, 
we use the semantic similarity values obtained from the 
expanded semantic links to automatically supplement the 
positive feedback set P.  That is, if an image is sufficiently 

related to P, it should be related to query q and should be 
automatically added to P.  Any database image Di satisfying 
the following condition will be added to P: 
                   4,3,2,1,),( kDqFS i

k
H

                  (10) 
where  is an empirically determined value (i.e., 0.8).  
These additional positive examples help SVM learning to 
improve classification accuracy and reliability, and provide 
long-term learning more chances to discover new images for 
memorizing. 

 
3. EXPERIMENTAL RESULTS 

We have tested our CBIR system on a 6000-image Corel 
database, with 100 images in each of 60 distinct semantic 
categories.  To facilitate the evaluation process, the CBIR 
system automatically selects query images and performs the 
relevance feedback process.  Specifically, a retrieved image 
is automatically classified as relevant if it is in the same 
semantic category as the query.  Four experiments have 
been designed to evaluate the retrieval performance.  In 
each experiment, we randomly chose 10% of the database as 
queries and performed a query session for each chosen 
query to construct the semantic matrix.  In each query 
session, we performed 4 iterations of relevance feedback 
with top 25 images returned in each iteration using (1) with 
wL=wH, where SimScoreH(q,Di) is computed by 
either ),( i

k
H DqS  (i.e., without incorporating N) or (9) (i.e., 

incorporating N).  The positive feedback set P may or may 
not be expanded for comparison purposes. For each query 
session, we introduced 5% random noise by having the 
simulated “user” classify some relevant images as irrelevant 
and some irrelevant images as relevant.  The system is then 
tested using the remaining 5400 images in the database as 
queries. No semantic knowledge is stored during the testing. 

Experiment 1: Basic memory learning versus low-
level learning. Fig. 1 compares the average retrieval 
accuracy using low-level SVM-based learning (wL=1 and 
wH=0 in (1)) and basic memory learning (i.e., no statistical 
learning is applied to obtain additional information), where 
SimScoreH(q, Di) in (1) is computed by ),(0

iH DqS  and the 
system does not incorporate N and expand P.  It shows that 
basic memory learning achieves better retrieval accuracy 
than traditional SVM-based learning at each iteration step. 
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Fig. 1: Accuracy of SVM-based and basic memory learning 
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Experiment 2: The viability of basic noise-resilient 
semantic learning (NRSL).  Basic semantic learning (SL) 
[11] and our basic NRSL respectively use ),(1

iH DqS  (Eq. 3) 
and ),(2

iH DqS (Eq. 4) to compute SimScoreH(q, Di).  Fig. 2 
compares the retrieval accuracy of these two systems and 
the basic memory learning system.  Due to erroneous 
semantic transitivity, the basic SL system degrades its 
retrieval accuracy.  However, the retrieval accuracy of our 
system increases after each iteration step.  It clearly shows 
the effectiveness of its resilience to noisy feedback.  It also 
improves the basic memory learning in iterations 2 to 4. 
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Fig. 2: Comparisons of basic memory learning and two SL 

systems without incorporating N and expanding P 
Experiment 3: Improvements of basic NRSL by using 

weight and representative strength.  Fig. 3 compares 
basic NRSL with weighted (Eq. 5) and representative 
strength-based weighted (Eq. 7) NRSL.  It shows the system 
derived by (7) performs the best and the system derived by 
(5) performs second best. 
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Fig. 3: Comparisons of three NRSL systems 

without incorporating N and expanding P 
Experiment 4: Improvements of NRSL by 

incorporating N and expanding P. Fig. 4 compares three 
NRSL systems constructed by respectively using (9) with 
k=2, 3, and 4 as SimScoreH(q, Di).  Additional positive 
images are automatically added to P using (10) to improve 
SVM learning. It shows a similar improvement pattern as 
Fig. 3. However, a significant retrieval accuracy 
improvement occurs at the last two iterations when 
comparing with the three peer systems in Experiment 3. 

 
4. CONCLUSIONS AND FUTURE WORK 

 
This paper introduces a noise-resilient long-term semantic 
learning method for image retrieval.  The proposed system 

uses a statistical memory learning method to learn 
additional semantic relationship between query and database 
images.  The learned relationship automatically adds 
potential positive images to the positive feedback set to 
improve SVM-based low-level learning.  Both high-level 
semantic and low-level feature similarity measures are 
combined to compute the overall similarity score between 
query and database images.  Our experimental results 
demonstrate the effectiveness of the proposed system. 
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Fig. 4:  Comparisons of three NRSL systems 

incorporating N and expanding P 
One advantage of our system is that the statistical 

method is effective even when images belong to multiple 
semantic categories. Clustering techniques will be 
considered to group images into appropriate semantic 
categories to facilitate the learning process. 
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