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ABSTRACT

In this work we present an efficient coding scheme suitable for lossy
image compression using a lattice vector quantizer (LVQ) based on
statistically independent data projections. The independence of these
components guarantees the optimality of the quantizer. However,
this introduces an overload in coding since the projection matrix
rendering the components independent needs to be transmitted to
the decoder. This issue is tackled by modeling the data such that the
projection matrix can be recovered at the decoder side based solely
on the model parameters. The original data can thus be recovered
based on a reduced descriptive data model and the statistically inde-
pendent components. Results show that the coding of independent
components with a lattice vector quantizer is highly efficient com-
pared with scalar or simple LVQ. Furthermore, the independent data
obtained by a model-based projection shows better efficiency with-
out the penalizing coding load of the projection matrix.

Index Terms— Image compression, Lattice Vector Quantiza-
tion (LVQ), Independent Component Analysis (ICA), product code,
data modeling.

1. INTRODUCTION

Vector quantization (VQ) is known to have the potential to achieve
the optimal theoretical performance if the vector dimension is arbi-
trarily high. Unfortunately, the computational complexity of optimal
unstructured VQs such as LBG [1] increases exponentially with di-
mension. In addition, the storage requirements can be very large.
One solution to overcome this problem of dimensionality is to use
some constrained VQ such as lattice vector quantization (LVQ) [2].

The LVQ approach leads to the design of a structured dictionary
whose codevectors are regularly distributed in the space. Therefore,
instead of optimizing the position of the vectors in space, one can fit
the source by indexing the lattice vectors according to the shape of
its distribution. For most of the real data sources this can be done
in an efficient way using a product code [3, 4, 5], leading to an op-
timal rate-distortion trade-off for symmetric unimodal source dis-
tributions [3]. Indeed, one can interpret such distributions as a set
of concentric hypersurfaces with the same shape depending on the
source distribution.

Now, we can index the lattice codewords by assigning a first
index (prefix) corresponding to the norm (radius) of the respective
surface and by assigning a unique index (suffix) corresponding to
the enumeration of the vectors belonging to a same surface. Fig-
ure 1 illustrate an example for a Laplacian source with a Z2 lattice
codebook.
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Fig. 1. Example of a product coding scheme for a 2-dimensional
Laplacian source with a Z2 lattice codebook.

In the context of multiresolution image coding, the subband co-
efficients obtained from wavelet decomposition can be modeled by
the generalized Gaussian distributions. This family of distributions
is parameterized by a single shape factor p (GG(p)) for a univari-
ate stochastic variable. An interesting property of the GG(p) distri-
butions is that shells of lp-norm correspond to surfaces of constant
probability. This allows for the development of effective product
codes [6].

Nevertheless, one may note that the performance of the LVQ
associated with the product code strongly depends on how well the
shape of the source is fitted. In other words, any mismatch of the
data support with respect to the dictionary indexing model degrades
the performance in the sense of the rate-distortion trade-off.

In the context of wavelet transformation for image data, the co-
efficients resulting from the transform are decorrelated but not com-
pletely independent, implying that the support does not match the
support of an independent GG(p) source. Therefore, the perfor-
mance of such a coding scheme will be compromised even using
indexing techniques capable of indexing GG sources for any shape
parameter p [6, 7].

In order to overcome this problem, in this work we propose
to preprocess the data vectors such that their support coincides as
close as possible to the one of a GG(p) distribution. Hereto we pro-
pose to use the technique of Independent Component Analysis (ICA)
which renders the vector data maximally mutually independent and
as such transforms the support of the data into independent gener-
alized Gaussians. We will show that the ICA algorithm can be data

12051-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



ICA X

M

γ

LVQ

suffix

prefix

Allocation

Bit

Product

Code

Estimated model parameters Θ

Bitstream

Fixed Length Coding

Entropy Coding

Coder

DWT
source data

p

Model Based
U

Fig. 2. Global coding scheme. p represents the shape factor of the generalized Gaussian distribution.

driven or model-based. For the latter case we gain in bit-rate iff the
image data (or wavelet projections) can be characterized with a cer-
tain precision by a model-based on only few parameters.

This paper will first briefly discuss the algorithms for LVQ and
ICA and will then show that by choosing an appropriate model for
the vector data the coding gain of a classical LVQ can easily be in-
creased (Section 3). In the results section we will focus on the rate
performance trade-off when the data model covers the data (im)per-
fectly and subsequent discussion will be developed at Section 5. In
Section 6 we conclude the paper and give some perspectives for the
future works.

2. LATTICE VECTOR QUANTIZATION

A lattice Λ in Rn is composed of all integer combinations of a set of
linearly independent vectors ai (the basis of the lattice) such that:

Λ = {x|x = u1a1 + u2a2 + ...unan} (1)

where the ui are integers. The partition of the space is hence regular
and depends only on the chosen basis vectors ai ∈ Rm (m ≥ n).
Note that each set of basis vectors defines a different lattice.

Each vector v of a lattice can now be considered as belonging to
a surface or hyper-surface containing vectors with constant lp norm
given by:

‖v‖p =

(
n∑

i=1

|vi|p
) 1

p

.

Under these conditions it is possible to encode a given lattice vector
using product code. Clearly, if the distribution of the source vectors
is Laplacian a good product code consists of a prefix corresponding
to the l1 norm of a vector and a suffix corresponding to its position
on the hyper-pyramid1 with radius equal to the considered l1 norm.
The position of the vector on a hyper-surface can be found using
an enumeration algorithm [2, 3, 4, 6]. Moreover, this ensures the
uniqueness for decoding.

In the case of sources with generalized gaussian distributions
with a shape parameter less than or equal to one, the superiority of
the cubic Zn lattice over D4, E8 or leech lattices has been estab-
lished [8] and hence we use in this framework the Zn LVQ along
with product code [6].

LVQ and product code scheme has optimal performance when
the vectors to code are independently distributed [3]. However, as
discussed before, wavelet transform does not guarantee a complete
independence of the coefficients. In order to increase the sparsity
of the image vectors and thus the coding gain, we introduce a spar-
sity pursuit algorithm projecting the wavelet coefficients onto a new
basis where maximum sparsity is obtained under some well known

1The hyper-surfaces of constant l1 norm are called hyper-pyramids

preconditions. The algorithm uses a model-based ICA and is pre-
sented in the next section.

The overall coding scheme presented in Figure 2 summarizes
the coding framework used in this paper.

3. MODEL-BASED INDEPENDENT COMPONENT
ANALYSIS

3.1. Principle of ICA

Consider the stochastic vectors y ∈ RN and x ∈ RM , where
each xi is independently distributed with respect to xj �=i. We can
then state that there exists a transform of variables which make the
variables in y take the properties of the vector x after transforma-
tion. This is a general problem in Blind Source Separation (BSS)
and can be solved by Independent Component Analysis (ICA) al-
gorithms. The BSS model considered here is the generative linear
mixing model

y = Fx + η , (2)

where the observed values in y are believed to be generated by the
statistically independent sources x through a linear mixing F up to
some modelling inaccuracies or noise η. For simplicity, we will con-
sider here only the noiseless case (or perfect modelling) η = 0, an
equal number of variables (N = M ) in y and x and a reversible
mixing matrix F. Whereas the purpose of BSS is generally the re-
construction of the source signals x by searching an appropriate ba-
sis to project the data on, i.e.

x̂ = ŴT y ,

with ŴT an estimate of F−1 as in Eq. 2, here we are solely in-
terested in a projection onto a basis which makes the data vectors
as independent as possible, optimising the vectors for the subse-
quent LVQ coding stage. This proves useful, since a lot of attempts
are reported in literature to describe natural images by their statis-
tics [11, 12] but as far as we know these statistical models have never
been exploited in an ICA framework to gain bandwidth in image
coding.

The envisaged statistical independence is defined as the decor-
relation of a signal, through all possible function images, i.e.

φi (xi) φj (xj) = δij ,

with φi and φj both functions with their argument and image in
R and δij is 1 iff i = j, 0 otherwise. Independence can thus be
seen as a stronger condition than simple decorrelation and as can
be seen from Figure 3 it ensures that the projection of xk onto the
k-th canonical basis vector results simply in its marginal distribu-
tion. It has been shown that there is a report between these mutual
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independence (which induces independence of the total set) and ne-
gentropy, or the differential entropy of a variable with respect to a
Gaussian sharing the same variance. It has also been shown that
the Edgeworth expansion of this negentropy can be rewritten as a
function of the marginal statistics of the filter output x̂, under mi-
nor preassumptions [13]. When truncating this expansion to exclude
negligible contributions, it proves sufficient to consider statistics up
to fourth order only [14]. Furthermore, we can omit all contributions
of the third order cumulants since they vanish for symmetric distri-
butions, which is approximately the case when considering outputs
of a wavelet decomposition.

The ICA algorithm considered here is such that the unmixing

matrix ŴT can be derived from some parameter set inherent to the
data, in particular their second and fourth order statistics represented
by their cumulants. More specifically, the fourth order cumulants of
a stochastic vector a are given by

Cum (aiajakal) = E {aiajakal} − E {aiaj}E {akal}
−E {aiak}E {ajal} − E {aiak}E {ajal} . (3)

Suppose now that we take a datavector with unit variance and
zero mean. As a consequence the first order cumulants (the means)
vanish and the second order cumulants (the variances) will all equal
1. This does not harm the generality since any vector y can lin-
early be transformed by taking z = V(y − μy), where V is the
projection matrix which renders V(y − μy) uncorrelated and unit
variance. This can be achieved by taking V as the inverse of the
covariance matrix of y or through the numerically more stable Sin-
gular Value Decomposition of y − μy. From hereon we will con-
sider y as a zero mean variable (μy = 0) and z as a vector of zero
mean uncorrelated unit variance random variables (Figure 3 left and
middle insert). The projection of y onto z is generally known as
prewhitening. Independence of such a prewhitened vector can now
be obtained by applying a rotation to the variable z i.e. Qx̂ = z,
where Q is orthonormal. Maximum independence of the set x̂ can
then be obtained by minimizing the sum of all cross-cumulants (alle-
viating the statistical dependencies at order 4) of x̂ over the space of
rotation matrices in order to maintain the unit variance, zero-mean
and decorrelation obtained in the prewhitening step:

Ψ(x̂) =
N∑

i,j,k,l=1
¬i=j=k=l

|Cum(x̂ix̂j x̂kx̂l)| = −
N∑

i=1

|Cum(x̂4
i )| , (4)

where x̂ is the result of a rotation Q applied to z. The latter equality
in Eq. 4 follows from the invariance of the cumulants under rotation.
We thus have the following equalities in the system:

x̂ = Qz = QVy = ŴT (y − μy) . (5)

Consequently, the solution Q� rendering the transformed vari-
ables x̂ as independent as possible is now given as

Q� = arg max
Q

Ψ(x̂) = arg max
Q

Ψ(QV(y − μy)) .

3.2. Introduction of the model

Since the cost of sending the separator matrix ŴT or its inverse F̂
has a far too high cost when coding, since its structure is suboptimal
for the LVQ (a non optimized version occupies N non sparse vectors
in RN ), there is a need to model the projection matrix by reducing it
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Fig. 3. From left to right: pair of original variables, decorrelated
variables and independent variables.

to a parameter set. Instead of pursuing a model to directly parame-

terize the matrix ŴT , we opt for a model of the random variables y
by reducing them to a parameter set Θ. Θ should now be chosen as
such that the second and fourth order statistics of the random vector
y can be deduced from it, since these statistics have proven sufficient
to solve for the set of independent generators, see Section 3.1.

In next section highlight the impact of the good choice of the
model when preprocessing dependent sources.

4. EXAMPLE OF AUTOREGRESSIVE MODEL

4.1. Model design

As an example of a generalized gaussian correlated source we as-
sume that the sources to encode are based on a first order autoregres-
sive model for images and image sequences [11]. For this model the
fourth and second order cumulants can be derived from a parame-
ter set Θ = {ρ, σy, p} as will be explained below. The regression
model AR(1) is given as:

yi(k) = ρyi−1(k) + ui(k)(p) , (6)

where each variable u
(p)
i is independently distributed following a

generalized gaussian distribution GG(p) and yj(m) is the m-th re-
alization of the j-th stochastic variable. To compute the matrices Q
and V, we need to retrieve the second and the fourth order cumu-
lants of z. These can be derived from the model in Eq. 6 as (see
also [11]2):

Cum (yiyj) = ρ|i−j| σ2
u

1 − ρ2
= ρ|i−j|σ2

y

Cum (zizjzkzl) = ρ|i−m|+|j−m|+|k−m|+|l−m| κu

1 − ρ4
,(7)

where m = min(i, j, k, l) and κu, σ2
u are the fourth and second

order autocumulants of u (all ui are i.i.d. as explained above) and
σ2

y is the second order marginal cumulant of y. With the param-
eter set Θ = {ρ, σy, p} we have thus all the information that is
needed to create the independent components to submit to the LVQ

(x̂ = ŴT (Θ)y) and to reconstruct the matrix Ŵ(Θ)T and thus its
inverse together with the original data at the decoder side by

ỹ = (Ŵ(Θ)T )−1 〈x̂〉 ,

where 〈〉 denotes the quantization introduced by the LVQ and ỹ is
the reconstruction of the original up to its errors introduced by quan-
tization only. Remark that a mismatch of the model and the data do
not introduce any errors, whereas it does have an influence on the
efficiency of the LVQ coding.

2Only moments were considered in this publication, however an extension
to cumulants is straightforward and due to a lack of space we here only give
the results.
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4.2. Experimental Results

To place the combined ICA-LVQ coder in perspective, the rate-dis-
tortion performance will be given with respect to a standard scalar
coding scheme and a data-driven ICA preprocessing as described
in Section 3.1. For this purpose we choose a source that is artifi-
cially generated along the model in Section 3.2 with parameter set
Θ = {0.8, 1, 0.7}. The results are given in Figure 4.

The first tested scheme in the simulations joins a uniform scalar
quantization without ICA pre-processing and a simple arithmetic
coder (SQ). A second scheme uses the Z64 lattice vector quantizer in
a product coder framework without ICA (LVQ). A third result com-
bines Z64 LVQ with a non-parametric ICA [14] without the bit cost

of the mixing matrix Ŵ (LVQ+ICA). Another scheme includes the

bit cost (arithmetic coding) of the mixing matrix Ŵ (LVQ+ICA+W).
The last one applies the proposed scheme, using the Z64 LVQ asso-
ciated with the model-based ICA with the cost of the vector of model
parameters Θ estimated from the correlated source (LVQ+MBICA+
Θ). Results are compared to the well-known bit plane coder of
JPEG2000 (kakadu software used).
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Fig. 4. Rate-distortion results for a synthetic source with
Θ = {0.8, 1, 0.7} and vector dimension 64.

5. DISCUSSION

From Figure 4 one can note the rate-distortion performance improve-
ment by coding the source by LVQ (Z64) with respect to ordinary SQ
scheme. Moreover, an additional gain over LVQ coding is obtained
by introducing an appropriate preprocessing, rendering our data in
concordance with the coding dictionary. However, the performance
gain introduced by the LVQ+ICA scheme is deflated by the coding

effort needed to send ŴT through the decoder, leading to the result
illustrated by the curve LVQ+ICA+W.

For this reasons we introduce a preprocessing based on a param-
eterized ICA model. Here, the cost of sending the mixing matrix

ŴT is replaced by the cost of sending the vectors of parameters
Θ, which is usually negligible with respect to the coding cost of the
independent data. The parameter vector Θ is able to describe the
cumulants of the correlated source, and thus, it allows us to estimate
ŴT . The recuperated Ŵ(Θ)T seems a good approximation to ŴT

and is able to project the data on a good support, within reasonable
distance to the dictionary, as prove the results.

6. CONCLUSIONS AND FUTURE WORK

We introduce the use of a model-based ICA as preprocessing algo-
rithm for LVQ/product code scheme. We have shown that if the
model is accurate enough and if it has a fairly small amount of pa-
rameters, one can improve the classical performances of LVQ coder
by better adapting the support of the source to the indexing algo-
rithm. If the model holds for the data the method acts as a Maximum
Likelihood separator and thus does not suffer from the limited num-
ber of samples that are taken as realizations of the stochastic data
vector. This creates an opportunity to sample the data into higher
dimensional vectors and thus to improve the coding gain.

As future works we will investigate the use of different models
on the context of image compression in order to improve the results
presented in [7].
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