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ABSTRACT 
This paper proposes a new still image codec. The encoder has the 
following structure: a set of pixels of the image is selected and 
transmitted, together with their position. Then, the value of the 
image at other places is obtained by a prediction algorithm at the 
decoder. A useful theoretical covariance model adapted to the 
image to be encoded is proposed, avoiding the transmission of 
additional information. The selected pixels and their corresponding 
positions on the image are encoded using lossless coding 
algorithms. The computational time of the decoding process is 
significantly reduced according to the efficient structured memory 
organization of (i) the image covariance values and (ii) the ordered 
distances concerning the search of nearest pixels. Experimental 
results performed on a set of test images show that the rate-
distortion results are competitive to the best coders JPEG 2000 and 
SPIHT with arithmetic coding. 

Index terms – Image coding, image reconstruction, prediction 
methods, image sampling 

1. INTRODUCTION 
Image coding topic receives an increasing interest since the 
multimedia applications are more and more growing demand in 
terms of memory resources for storage purpose and\or a higher 
speed transmission. State of the art, on the framework of still 
image coding, shows that the most powerful conventional image 
coders are all derived from the wavelet transform paradigm. Three 
underlying components are currently implemented in the 
traditional wavelet coders: (i) the wavelet transform decorrelating 
and compacting the energy into few coefficients, (ii) the 
quantization procedure, and (iii) the entropy coding step. 
Considerable research works are performed on these different 
components. Based on these remarks, many best image wavelet 
coders have been developed such as the EZW algorithm ([1]), 
followed by the SPIHT algorithm ([2]) and the EBCOT algorithm 
([3] [4]) adopted by the JPEG200 image compression standard 
([5]). This paper proposes a new still image coding approach based 
on irregularly sub-sampled images. 

Usually, digital images contain both homogeneous regions in 
smooth areas and non-homogenous regions in detail areas. The 
conventional sampling process operates without any consideration 
of the type of the different image areas. Only one selected 
sampling rate, above the Nyquist rate, is applied over the whole 
image allowing therefore the extraction of equally spaced pixels. 
However, the regular sampling generates redundant information in 
homogenous regions. Rather than restricting the sampling rate to 
regular one (above Nyquist rate), this paper proposes to operate 
with variable sampling rate adapted to the image content. 

Irregular sub-sampling image approach retains a small fraction 
of pixels (non-redundant), thus reducing the memory size of the 
original image since the number of the retained pixels on the 
original image has decreased. The problem of selecting the 
appropriate pixels on the image grid in accordance with the 
minimization of the mean square error between the original image 
and its prediction is considered. An adaptive sub-sampling 
algorithm closely related to the prediction algorithm is proposed. 
The distribution of the samples is thus closely related to the 
content of the image to be encoded. The proposed codec is 
summarized by Fig. 1. 
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Fig. 1 Still image codec 

In the literature many reconstruction algorithms are available 
(see e.g. [7], [8], [9], [10]). However some algorithms require a 
high computational load and/or too many parameters to be 
transmitted to the decoder affecting therefore the performance of 
the codec. The main objective of this paper is to propose a new 
competitive still image codec. 

The performance of the proposed codec in terms of encoding 
efficiency and fast decoding implementation is mainly due to the 
modifications brought to the prediction algorithm proposed in [11]. 
In order to reduce the encoding cost of the proposed approach, we 
propose a useful theoretical covariance model which approximates 
suitably the experimental model. The covariance values are 
computed only once and are stored in an efficient way in the 
memory. These values are accessible during all the decoding 
process. Moreover an efficient search algorithm of the nearest 
neighbors is proposed. It is based on an efficient memory data 
organization reducing the computational load of the decoder. 

The rest of the paper is organized as follows. Section 2 
introduces the adaptive sub-sampling algorithm adopted by the 
encoder. Section 3 presents the general formulation of the basic 
prediction algorithm and provides its main drawbacks. Section 4 
focuses on the modifications brought to the basic algorithm. 
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Section 5 provides the simulation results. Section 6 concludes our 
work. 

2. ADAPTIVE SUB-SAMPLING ALGORITHM ADOPTED 
BY THE ENCODER 

This section deals with the optimal distribution problem of the 
retained pixels on the image grid for the encoding purpose. Before 
presenting the sub-sampling algorithm, we introduce some 
notations required for our later developments. 

Let denote I  the original image to be encoded. It is defined as 
follows: 

 ,...,1 ;,...,1for    ),( NyMxyxuI iiii  (1) 
where ),( ii yxu  is the gray level of the pixel located at the position 

),( ii yx  on the image grid I . 
The prediction of the pixel, located at position ),( ii yx  on the 

original image grid I , is denoted ),(ˆ ii yxu . The prediction error 
between the original pixel and its prediction is given as follows: 

),(),(ˆ),( iiiiii yxuyxuyx  (2) 
Let denote 0I  the original image irregularly sub-sampled as 

described in the following section. 
In order to reconstruct the initial image with a minimum loss of 

information, an adaptive sub-sampling algorithm is proposed. Fig. 
2 and Fig. 3 summarize the different optimization steps of the 
adaptive sub-sampling algorithm.  
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Fig. 2 Initialization step of the adaptive sub-sampling algorithm 

As an initialization step, the adaptive sub-sampling algorithm 
begins by selecting a very weak sampling of pixels regularly 
spaced on the original image I  (sampling rate denoted by L  in 
Fig. 2). The retained initial amount of pixels must be as smaller as 
possible than the fixed set of the pixels to keep for the coding 
process. 

The second step operates on this regular sampled grid. The 
missing pixels are reconstructed using a prediction algorithm 
which will be presented in the next section. The predicted pixels 
introducing the maximal prediction errors ( ),( ii yx ) are 
considered as candidate pixels to be encoded. The threshold 
prediction error is implicitly fixed by the desired amount of 
sampling to reach. Therefore, the pixels are inserted on the image 
grid providing naturally an irregular sub-sampled image denoted 

0I . The distribution of the samples is closely related to the content 
of the image to be encoded.  

The last optimization step, provided by the block diagram of 
Fig. 3, is considered as a refinement step of the pixels around their 
close neighborhood. Indeed, at the initialization step, the weak set 
of pixels has been regularly distributed without any specific 
criterion. Therefore each previously selected pixel, belonging to 
the sub-sampled image 0I  (Fig. 2), is replaced by one of its eight 
close neighbor pixels. For each of eight replacements, the dropped 
pixels on the image grid 0I  around the same neighborhood are 
predicted. Among these eight considered pixels, the pixel which 
introduces a maximal prediction error in its neighborhood is 

retained on the sub-sampled grid 0I . 
The refinement process is applied several times on the fixed 

available amount of pixels, until the global mean square prediction 
error converges to a minimal mean square error. 
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Fig. 3 Refinement steps of the adaptive sub-sampling algorithm 

3. THE BASIC PREDICTION ALGORITHM AND ITS 
MAIN DRAWBACKS 

The unknown gray level value, located at position ),( kk yx  on the 
irregular sub-sampled image grid, is estimated using a weighted 
linear combination of n  available pixels in the neighborhood, 
denoted 

kk yxD , , around the unknown pixel. The estimator is given 
as follows: 

n
1i ,  ),( ),(

, iiDikk yxuayxu
kykx

 with 
kk yxii Dyxu ,),(  (3) 

where 
kykxDia

,,  is the i-th weight associated to the pixel ),( ii yxu  
located at position ),( ii yx  on the image grid 0I . The parameter 
n  represents the neighbors of the unknown pixel belonging to 

kk yxD , . 
The best linear unbiased predictor is obtained by determining 

the weights 
kykxDia

,,  those minimizing the mean square error 
(MSE) between the original image I  and its prediction Î . The 
formalism of Lagrange leads to the following system of equation: 

n

i Di

kkjj
n

i DiijjDi

kykx

kykxkykx

a

yxuyxuCovyxuyxuCova

1 ,

1 ,

1

)),(),,(()),(),,((

,

,,

Nj  (4) 
where )),(),,(( iijj yxuyxuCov  denotes the covariance value 
between two pixels ),( ii yxu  and ),( jj yxu  located respectively 
at positions ),( ii yx  and ),( jj yx  on the image grid. 

kykxD ,
 is 

the Lagrange multiplier. 
Let us analyse what happens, in terms of encoding cost and 

computational load, if the codec uses directly this basic prediction 
algorithm: 
(i) The prediction of one pixel by the decoder requires the 
knowledge of the following information which therefore must be 
transmitted by the encoder side: 

 the coordinates of the retained pixels; 
 the grey levels of the retained pixels; 
 the image covariance values. 

(ii) In point of view of the computational load, at each time when 
the decoder predicts one pixel located at position ),( ii yx , the 
computation of the unknown set of coefficients 

kykxDia
,,  is 

necessary. For this, the decoder follows the listed steps: 
 searching the n  nearest neighbors around the unknown pixel; 
  constructing the matrix of the image covariance values; 
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  solving the system of equation (4) which consists to inverse 
the image covariance matrix of size )1()1( nn . 

The first point (i) affects considerably the global encoding cost 
of the compression method. While the second point (ii) increases 
significantly the global computational load of the decoder. 

4.  MODIFIED PREDICTION ALGORITHM FOR FAST 
DECODING IMPLEMENTATION 

To overcome the drawbacks of the basic prediction algorithm, this 
section proposes different modifications brought to the algorithm 
as listed below. 

4.1. Reduction of the number of neighbors 

The number of neighbors required by the prediction algorithm is 
restricted to three. As a first consequence, this reduces the size of 
the matrices to be handled by equation (4). 

),( kk yxu
Range

Range

Range Range

X

: available pixels

: unknown pixel

:  nearest pixels

X

),(),( rangerangeyx kk

),( kk yxu
Range

Range

Range Range

X

: available pixels

: unknown pixel

:  nearest pixels

X

),(),( rangerangeyx kk

 
Fig. 4 A master sliding window 

4.2. Useful theoretical covariance model 

Inspired from kriging methods developed in mining applications 
([6]), we propose the construction of a theoretical covariance 
model which approximates suitably the experimental covariance of 
the image given by the following equation: 

ji jjii yxuyxu
hN

hCov 2)),(),((
)(

11)(  (5) 

where )(hN  is the number of pairs separated by the distance h  
between two pixels. This method, as it will be described below, 
avoids the transmission of the covariance values to the decoder. 

This step is important since the selected covariance model 
determines the quality of the reconstructed image. In the majority 
of experiments performed on several image realizations, the linear 
covariance model is generally well adapted in a domain image 
restricted within a range usually lower or equal to 20 (see Fig. 4). 

We propose to use the following linear covariance model 
where h  is the normalized Euclidian distance between two pixels: 

hhCov 1)(  (6) 
Assume that three nearest pixels, belonging to the sliding 

domain 
kk yxD , , are selected ( ),( 11 yxu , ),( 22 yxu , ),( 33 yxu ) 

around the unknown pixel ),( kk yxu . The system of equation (4) is 
presented in a matrix form as follows: 
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where jih ,  is the normalized Euclidian distance between two 
pixels ( ),( ii yxu , ),( jj yxu ) belonging to 

kk yxD ,  as follows: 

byyxxh jijiji
22

, )()(  (8) 

The weight coefficients, given by equation (7), are computed 
analytically (e.g. using symbolic computations) once for all. The 
expressions are not provided in this paper due to lack of place. 
Each coefficient is a weighted combination of covariance values. 
Before concentrating on the computation of these covariance 
values in a fast way, the following paragraph focuses on the fast 
search for the nearest pixels 

4.3. Efficient search algorithm of the nearest pixels  

The Euclidian distance between the coordinates of the pixels is 
used to determine the nearest pixels around the pixel to be 
predicted. The algorithm is based on the construction of a master 
sliding window (see Fig. 4) depending on the fixed range: 

]2 ,0[]2 ,0[, rangerangeD rangerange . 
Only once, as an initialization step, the proposed search 

algorithm constructs and sorts in an increasing order the 
2)12( range  Euclidian distances jih ,  computed between each 

point belonging to the master window and its center point 
),( rangerange  corresponding to the point that we want to predict 

(see Fig. 4). 
The memory organization for the fast search of neighbors is 

provided by Fig. 5 where the first column concerns the 
2)12( range  distances previously sorted only once. Then, the 

search algorithm updates the second and third columns. 
For the prediction of any pixel ),(ˆ ll yxu , the algorithm 

updates the second column as follows: 

rangeyyy
rangexxx

lii

lii  with 
ll yxll Dyx ,),(  (9) 

The third column is updated with the grey level of the pixel (if 
available) or the character string “Nap” if non available pixel. 
Since the distances are already sorted, the decoder recovers 
directly the three nearest retained pixels on the image grid. 
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Fig. 5 Fast search algorithm of the nearest pixels using efficient 

memory organization 

4.4. Memory organization of the covariance values 

Once the closest neighbors are obtained, one needs to be able to 
compute their covariance values in a fast way. As an initialization 
step, all possible covariance values are computed once for all on 
the master sliding window rangerangeD ,  according to the following 
relation: 

jiji hhCov ,, 1)(  for all ]2,0[, rangeji  (10) 
These covariance values are then efficiently organized and 

stored in a memory (see Fig. 6). The first block, denoted by (a) in 
Fig. 6, concerns all the covariances computed between the first left 
pixel in the sliding window with all pixels in the sliding window 
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and so on. For each pixel prediction, the decoder has only to 
recover the desired covariances from the memory according to the 
position of the nearest pixels. 
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Fig. 6 Efficient organization of the image covariance values 

5. ENCODING PROCESS 

This section concerns the encoding process. According to the 
previous sections, only two kinds of information have to be 
encoded: the retained pixel values and their corresponding 
positions on the image grid.  

The positions of the pixels are encoded using a bi-level map 
grid where (i) the retained pixels are encoded by “1” and (ii) the 
rejected pixels by “0” at their corresponding positions on the sub-
sampled image. Many lossless coding methods are available in the 
literature (arithmetic coding, RLE, VLC, LZ, …). However the 
lossless JBIG2 compression method has been retained since its 
compression ratio is higher compared to other lossless methods 
([12]).  

The retained pixel values are gathered in a vector. The 
Lempel-Ziv-Markov chain-Algorithm (LZMA) combined to the 
arithmetic coding algorithm has been chosen to encode these 
retained pixels. LZMA is based on a variable dictionary scheme 
and presents a high compression ratio particularly for this kind of 
data. The software for a fast decoding version is provided in ([15]). 

6. SIMULATION RESULTS 

This section presents and compares the performances of the 
proposed still image codec. The simulation results are performed 
on traditional test images Lena, boat, Goldhill and peppers images. 
The respective reference software of the best coders SPIHT ([13]) 
and JPEG2000 ([14]) is used to compare the performance, in term 
of rate-distortion, of our codec. The quality of the decoded image 
is measured using the Peak Signal to Noise Ratio between the 
original and the decoded image. 

The adaptive sub-sampling algorithm is applied on each test 
image. The sampling, in the provided examples, has been fixed to 

%9.4  of pixels. The initial regular sampling has been fixed to 
%45.0  of pixels. 

 

Table 1 Comparisons of the PSNR results 

Table 1 summarizes the PSNR results achieved by the different 
coders for a fixed rate. The final sub-sampling optimization step 
for Lena, Boat and Peppers has been achieved respectively for 6, 2 
and 6 global iterations. The results are similar for Lena, less good 
for Boat, better for Peppers and Goldhill. The results are closely 
related to the complexity of the image. Obviously, this method is 
not very competitive for very low bit rate, since a very small 
fraction of pixels (e.g. smaller than %1 ), will not lead to an 
acceptable distortion, except on very specific images. However, it 
is seen that, for medium rates, it can be very efficient. It is likely 
that the good performances on peppers and Goldhill is due to its 
smoothness, while boat, being very busy, would require a higher 
number of points to be transmitted, and the method would be 
efficient only for higher rates.  

7. CONCLUSION 

This paper has proposed a new still image codec. The presented 
approach is based on a variable and adaptive sampling rate 
depending on the image content. The retained pixels are selected 
according to the smaller prediction error. A useful theoretical 
covariance model with no side information needed by the decoder 
has been proposed. Focusing on the implementation complexity of 
the prediction algorithm, we have proposed an efficient memory 
organization of the covariance values and the distances allows 
obtaining a significant saving in computational time. The PSNR 
results show that the proposed method is competitive to the best 
coders. However, many questions arise for future investigations 
such as (i) from which fraction of pixels the compression method 
remains valid with a competitive distortion (ii) for a fixed bit 
budget and a given distortion how many pixels the compression 
method must retain. 
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Size Images Rate 
(bpp) 

SPIHT 
(dB) 

JPEG2000 
(dB) 

New 
codec 
(dB) 

512512  Lena  0.636 38.29 38.28 38.21 
512512  Boat 0.654 36.09 35.96 35.30 
512512  Peppers 0.635 36.66 36.63 37.27 
512512  Goldhill 0.646 34.25 34.30 34.61 
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