
NEAR LOSSLESS IMAGE COMPRESSION BY LOCAL PACKING OF HISTOGRAM 
 

E. Nasr-Esfahani1, S. Samavi1, N. Karimi1, S. Shirani2 
 

Department of Electrical and Computer Engineering 
1Isfahan University of Technology, Isfahan, Iran 

2McMaser University, Hamilton, Canada 
 

ABSTRACT 
 

In this paper a low complexity algorithm is proposed for 
near lossless compression of images.  The reconstructed 
near lossless image can differ from the original one within a 
pixelwise error tolerance.  This property is used to convert 
the histogram of the original image, by the proposed 
algorithm, to a new histogram which is proved to have 
minimum entropy.  Hence, a new image is formed which 
has minimum entropy and high spatial correlation among its 
pixels and can efficiently be compressed.  Simulation results 
show the effectiveness of this compression algorithm.  
 

Index Terms— near lossless compression, lossless 
compression, image histogram 
 

1. INTRODUCTION 
 
With evermore increase in transmission of images over 
mobile communication devices and internet importance of 
image compression is becoming more apparent.  Many 
coding techniques have emerged with varying degrees of 
efficiencies. All these techniques can be basically classified 
into two main categories of lossy and lossless compression 
techniques. Lossy schemes discard the less relevant parts of 
the visual information of an image. This is the case, for 
example, of digital photography, where losing some of the 
image detail is tolerable. In lossless methods at the expense 
of lower compression ratios all of the original image 
information is maintained.  Applications such as medical 
and space imaging or in remote sensing lossless 
compression is usually applied [1]. 
In many situations the exact lossless recovery is not 
essential deviation from original pixel values can be 
tolerated within certain error range.  This error should not be 
averaged out through out the whole image, but rather for 
every pixel an error tolerance should be observed [2]. This 
pixelwise error tolerance gives rise a third type image 
compression known as near lossless scheme.  Near lossless 
could significantly increase compression ratios while the 
reconstructed image pixels are guaranteed to have a 
maximum error within a tolerable range [3]. 
Near lossless approaches can be categorized into two 
groups: predictive coding based schemes [1, 4, 5, 6] and 
transform based methods [3, 7]. In [1] a DPCM coding 

scheme is employed incorporating entropy-minimization of 
the quantized prediction errors.  In [4] an algorithm called 
CALIC (context-based, adaptive lossless-image codec) is 
proposed which performs error-constrained compression.  
JPEG-LS [5], is based on the LOCO-I algorithm developed 
at HP Labs and has low computational complexity and 
memory requirements. It also uses context-based entropy 
coding of the quantized prediction residuals. In [6], we 
proposed a trellis-based algorithm to perform a near lossless 
image compression.  
In [3], the authors proposed a two stage near lossless 
compression scheme consisting of a wavelet-based lossy 
layer followed by a second stage for arithmetic coding of the 
quantized residuals. Also a wavelet-based two-stage near 
lossless coder is presented in [7]. It requires iterations to 
find the optimal first-stage bit rate and uses context-based 
entropy coding for residuals in the second stage.  
Reference [6] uses a trellis-based non-iterative algorithm to 
obtain maximum run length codes for compression of each 
row of an image. The performance of the Greedy Path 
Selection Algorithm, as explained in [6] has been 
marginally better than many other near lossless schemes but 
low complexity is its main advantage.  
In this paper a near lossless scheme is proposed which uses 
local packing of an image histogram's bins. After setting an 
error tolerance, we group histogram bins into a number of 
small groups and then pack each group into a single bin. 
Groups are formed within tolerable error constraints.  This 
packing is equivalent to near lossless image formation.   We 
prove that our packing scheme produces minimum entropy 
histogram. The proposed method will be used in conjunction 
with a lossless scheme to achieve better compression ratios. 
In section 2 of the paper we explain the packing scheme and 
the proposed compression method.  In section 3 simulation 
results are presented and the proposed method is compared 
with other standard methods. Concluding remarks are 
offered in section 4 of the paper.  
 

2. PROPOSED NEAR LOSSLESS METHOD 
 
Considering image I, by changing the intensity of pixels of I 
within the permissible range of Equation 1, the entropy of 
image changes.  
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In Equation 1 variables ),( jiI  and ),(
~

jiI respectively 

indicate an original intensity of a pixel and the altered pixel 
value.  The change that occurs in the image may cause an 
increase or a decrease in the entropy of the image.  Here we 
intend to offer an algorithm for changing the intensity of 
pixels in a manner that reduces the overall entropy of the 
image.  Considering M=1 in Equation 1, each pixel could 
get one of three intensities.  Hence, for an image with 
512×512 pixels there are about 3512×512 possible image 
configurations.  To find a way to decide which of these 
configurations give minimum entropy the following 
argument is laid down.  Changing intensities of pixels is 
equivalent to combining bins of the histogram of the image 
by transferring a bin, partially or totally, to an adjacent bin. 
Proposition 1: what portion of a histogram bin should be 
transferred over to adjacent bins to achieve minimum 
entropy? 
Let us consider the sample histogram of Figure 1(a). Parts 
(b) and (c) of Figure 1 show different cases of transferring a 
bin to its adjacent bins.   

 
 

(a)  
(b) 

 

 
(c)  

 
(d) 

Figure 1. (a) original histogram, (b) partial transfer of a bin to two 
adjacent bins, (c) total assimilation of a bin, (d) portioned 

assignment of bin i to adjacent bins. 
 

In Figure 1(a) variables n1, n2, and n3 are the 
populations of three adjacent bins. In Figure 1(b) a part of 
bin i has remained in tacked and the rest of it has been 
transferred to the adjacent bins. On the other hand, Figure 
1(c) shows a case where bin i has completely been 

transferred, as two distinct parts, to the two adjacent bins.     
Entropy of Figure 1(b) is shown in Equation 2 and that of 
Figure 1(c) is given by Equation 3.  
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In the above two equations e is the entropy of other bins and 
S is the total pixels of the image. From Equations 1 and 2 
we can conclude that  
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Therefore, to obtain a histogram with minimum entropy, 
through application of Equation 1, either a histogram bin 
should be left in tacked or it should be completely 
transferred to adjacent bins.  
Proposition 2: If a bin is to be transferred, what portion is 
transferred to the bin with higher intensity and what portion 
to the bin with lower intensity?   
Figure 1(d) shows an example of transferring  percent of a 
bin to one side and the rest to the other side.  We need to 
find an  which minimizes the entropy.  
The entropy of the histogram of Figure 1(d) after the bin 
transfer can be expressed as a function of  according to 
Equation 6. 
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Equations 7 and 8 show the first and second derivatives of 
the above function.   
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Since Equation 8 is always negative it means that E as a 
function of  is concave downward. This means that 
minimum value of E is either at the beginning or end of the 
possible values of .  Hence, minimum entropy either occurs 
at 0=α or 1=α .  In another words, when transferring a bin 
to adjacent bins, the whole bin should be transferred to only 
one of the adjacent bins.  Therefore, for every bin of a 
histogram we can have one of the three below choices: 

1-Bin is not transferred. 
2-Bin is completely transferred to the right. 
3-Bin is completely transferred to the left.  
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 We can generalize this argument for other values of M 
beside M=1.  

Based on the above two propositions an algorithm is 
proposed for local packing of histogram for a certain M 
constraint.  For the case of M=1 the number of all 
combinations that bins of a histogram could have is about 
3256.  This is for a case that 8-bit grayscale pixels are 
considered in an image.  To find combinations that produce 
minimum entropy we use a graph.  A partial sample graph is 
shown in Figure 2. Every bin of the histogram is equivalent 
to a node in the graph. An arc in the graph represents the 
group packing of the node, which the arc originates from, 
with all those nodes that the arc jumps over them.  Every 
path on the graph, which starts from the node at the very left 
of the histogram, goes through a number of nodes and will 
end at the node at the very right of the histogram. Therefore, 
every path represents a certain combination of locally 
group-packed bins. Referring to Figure 2, as an example, a 
path is shown with dotted arcs.  This indicates packing of 
bins 0, 1, and 2 as one group, and packing bins 3 and 4 as 
another group. For packing of bins 0, 1, and 2, based on 
Equation 1, bins 0 and 2 should be transferred to bin 1.  On 
the other hand, for packing bins 3 and 4 two choices exist: 
either transfer bin 3 to 4 or transfer bin 4 to 3.  The resulting 
entropy from either of these two choices is the same.   Now, 
a path should be selected (from a large collection of possible 
paths) to minimize the overall entropy of the resulting 
locally packed histogram.  All of the arcs in the graph are 
labeled with the local entropy that will result from packing 
of the bins that the arc indicates.  Using the Viterbi 
algorithm [9] we can select a path on this graph with 
minimum entropy.  

 

   

 
Figure 2. An example of graph formation for M=1. 

 

The effects of local packing of histogram bins are 
shown in Figure 3 where in the top-left we have the original 
histogram and the other histograms are formed based on 
different values of error tolerance, M.  

The proposed local packing of histogram bins (LPH) 
changes the intensities of some of the pixels within a 
specific error tolerance. The proposed method minimizes the 
histogram entropy.  This in turn, within the mentioned 
constraints, produces an image with minimum entropy.  We 
can apply the proposed method to serve as a preprocessing 
block of a lossless compression unit to obtain an efficient 
near lossless compressor.  This preprocessor while reducing 
the entropy increases spatial correlation among many 
neighboring pixels.  Hence, the compression ratio of the 
lossless block increases, too. The overall block diagram of 
our scheme is shown in Figure 4. 

 
5.80 Entropy

 
7.38 Entropy

M = 1 M = 0  

 
Entropy = 4.59 

 
Entropy = 5.07 

M = 3 M = 2  

 
Entropy = 3.05 

 
Entropy = 3.95 

M = 10 M = 5  
Figure 3.  Effect of application of LPH method to a 

histogram. 
 

  To study the effects of the lossless compression block on 
the overall performance of the algorithm two different 
lossless schemes are used in final block of Figure 4.  In one 
case the final block of Figure 4 consists of median edge 
detection (MED) predictor where the produced prediction 
errors are encoded by Huffman coding. We call this scheme 
as LPH+MED.  On the other hand we can place a very 
efficient lossless compression scheme such as JPEG-LS 
inside the last block of Figure 4. We refer to this 
combination as LPH+JPEGLS.   In the following section we 
compare our proposed method with a number of standard 
near lossless schemes such as CALIC, JPEG-LS (with error 
tolerance), and methods of references [3], [6] and [8].  
 

3. SIMULATION RESULTS 
 

In Table 1 the implementation results for the proposed 
LPH+MED and LPH+JPEGLS are compared with a number 
of standard near lossless schemes.  Also, results from a 
number of schemes proposed in the literature are presented.  
For any value of tolerable errors, M, the hybrid 
LPH+JPEGLS has been superior to LPH+MED.  This is due 
to the efficiency of the JPEG-LS.  Considering the low 
complexity of the proposed LPH and low overhead that it 
imposes, we see that for any value M the hybrid 
LPH+JPEGLS performs better than JPEG-LS.  It should be 
reminded that JPEG-LS, used in table 1, is the near lossless 
version and the one used in the proposed hybrid algorithm is 
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lossless.  This means that LPH preprocessor, with small 
overhead, can improve the performance of the near lossless 
JPEG-LS algorithm. Also, the algorithm of reference [8], 
despite its high complexity and iterative nature, for small 
values of M is inferior to the LPH-JPEGLS algorithm.  For 
small values of M the proposed hybrid LPH-JPEGLS 
outperforms that of reference [3].  The obtained results from 
the proposed method are very much comparable with those 
of CALIC, while the proposed method has lower complexity 
than CALIC.  For any value of M the proposed method 
outperforms the algorithm of reference [6].   

 
Figure 4. Block diagram of propose method. 

 

4. CONCLUSION 
In this paper we proposed an algorithm for near lossless 
compression.  An input image was used to produce a 
histogram.  A tolerable error threshold is required in any 
near lossless scheme. We proved in this paper that, within 
the set error constraint, a histogram could be produced with 
minimum entropy.  This was done by packing of histogram 
bins.   Hence, we were able to reconstruct a near lossless 
image with minimum entropy.  The reconstructed image 
was then fed into a lossless image compressor to achieve an 
efficient near lossless scheme. The proposed method was 
hence proved to be capable of converting any lossless 
scheme into a near lossless one.  Experimental results 

showed acceptable results as compared with standard 
schemes as well as schemes presented in the literature.  
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Table 1. Comparison of proposed method with other compression schemes 
M=6 M=4 M=2 M=1 M=0   

PSNRBPP PSNRBPP PSNRBPP PSNR BPPPSNR BPPMethod
36.74 1.55 39.911.7445.122.3049.89 2.89 ∞  4.40LPH +MED 
36.74 1.18 39.911.4345.121.9549.89 2.53 ∞  4.25LPH +JPEGLS 
36.99 1.24 40.111.5445.152.0949.90 2.72 ∞  4.25JPEGLS[5]
37.21 0.96 40.271.2945.161.9549.89 2.59 ∞  4.10CALIC[4] 
38.56 0.92 40.561.3645.172.1249.89 2.77 ∞  4.30REF[3]
38.54 0.86 40.59 1.28 45.16 2.02 49.89 2.69 ∞  N.A REF[8]
36.70 2.15 40.002.4043.912.8149.00 3.16 ∞  4.49 REF[6] 

L
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a 

36.73 2.13 39.89 2.48 45.11 3.21 49.88 3.84 ∞  5.06 LPH +MED 
36.73 1.57 39.89 1.93 45.11 2.55 49.88 3.18 ∞  4.86 LPH +JPEGLS 
36.99 1.67 40.04 2.02 45.14 2.65 49.89 3.30 ∞  4.86 JPEGLS[5]
37.21 1.40 40.11 1.77 45.14 2.42 49.89 3.07 ∞  4.59 CALIC [4] 
38.56 1.52 40.52 1.97 45.16 2.72 49.90 3.38 ∞  4.90 REF [3]
38.59 1.48 40.54 1.91 45.17 2.65 49.89 3.31 ∞  N.A REF[8]
36.64 2.07 40.05 2.83 43.94 3.54 49.00 4.2 ∞  5.2 REF[6] 

B
ar

ba
ra

 

1200


