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ABSTRACT

This paper presents a satellite image compression scheme based on
a post-processing of the wavelet transform of images. The ban-
delet transform is a directional post-processing of wavelet coeffi-
cients. Thanks to a low computational complexity, this transform
is a good candidate for future on-board satellite image compression
systems. First, we analyze the ability of the bandelets to exploit di-
rectional correlations between wavelet coefficients. This study leads
to an improved post-processing with a better decorrelation of adja-
cent wavelet coefficients in the vertical or in the horizontal direction
taking into account the wavelet subband orientations. To perform
even better decorrelation, bases are also build by Principal Compo-
nent Analysis (PCA). This results in an improved compression per-
formance without increasing the computational complexity.

Index Terms— Image coding, wavelet transforms, decorrela-
tion, discrete transforms, satellite applications

1. INTRODUCTION

The discrete wavelet transform associated with subband coding pro-
vides high image compression ratio. Although the wavelet trans-
form performs well on smooth areas, the wavelet representation of
edges is not sparse. Indeed, wavelet coefficients have high magni-
tude around the edges and correlations between those coefficients
remain. Therefore, great efforts have been made in the design of
coding schemes to handle the redundancy near the edges. Morpho-
logical coding schemes [1, 2] are examples of coders designed to
exploit clusters of high magnitude wavelet coefficients. The signif-
icance propagation pass in EBCOT coder [3], which is part of the
JPEG2000 standard, has the same goal. The CCSDS (Consultative
Committee for Space Data Systems) recommendation for image data
compression [4] specially targets on-board spacecraft compression.
In this recommendation, wavelet coefficient redundancy is exploited
in a tree-like coding scheme.

Some transforms derived from the wavelets provide sparser rep-
resentations of edges. Some of them are not suited for image com-
pression since they use redundant representations [5, 6]. On the
contrary, the orthogonal bandelet transform [7] is critically sampled
which makes it attractive for image compression. It is an adap-
tive linear post-processing of an orthogonal wavelet transform. The
wavelet subbands are split into blocks and transformed using an or-
thogonal basis selected in a dictionary. A practical bandelet scheme
for image compression has been proposed in [8]. It is called the ban-
delet transform by grouping. It is easier to implement than [7] and
thus a better candidate for on-board compression. It uses a dictionary

of directional bases built by grouping wavelet coefficients along the
same direction and transforming them in discrete polynomial bases.

In this paper, the goal is to prove that it is possible to enhance
the compression performance by further decorrelation of the wavelet
coefficients. We first analyze the directional bases built in [8] for the
grouping bandelet transform and then, we propose new bases which
are better suited to decorrelate the wavelet coefficients in the differ-
ent subbands. In section 2, we briefly review how the directional
bandelet bases have been built as well as the practical bandelet com-
pression scheme. In section 3, we analyze the ability of the bandelet
bases to capture directional correlations. Based on the observation
of this section, we propose extended grouping configurations in sec-
tion 4 and we build new dictionaries of orthogonal bases which bet-
ter decorrelate wavelet coefficients. Even better decorrelation is ob-
tained with bases learned by Principal Component Analysis (PCA).
Finally, in section 5, we compare compression results obtained with
the new dictionaries on a test set of Earth observation images to the
results obtained using an implementation of the bandelet transform,
the CCSDS coder [4], and JPEG2000 [3] and show that better decor-
relation leads to better compression results.

2. BANDELET TRANSFORM

This section presents an overview of the grouping bandelet trans-
form which has been proposed in [8] for image compression. The
reader is referred to [7, 8] for a complete overview of the bandelet
theory. In the following, the size of blocks is set to 4× 4. This size
has been determined based on empirical compression results and on
intra-band statistical analysis of wavelet coefficients. Indeed, the
wavelet coefficient dependency is very low for a distance larger than
4 pixels.

2.1. Grouping bandelet bases dictionary
The grouping bandelet dictionary proposed in [8] is composed of
NB = 12 directional bases. They have been built by linking coeffi-
cients along the same direction as displayed on figure 1. Neverthe-
less, some coefficients cannot be linked in the appropriate direction.
Those coefficients are thus linked either in the vertical or in the hor-
izontal direction.

Discrete orthonormal Legendre polynomial bases are assigned
to each of these groupings. Those bases have been plotted on figure
2. Polynomials up to a degree n − 1 are used for the groupings of
n coefficients. This finally results in a dictionary D = {Bb}NB

b=1 of
NB = 12 bases of R

M denoted by Bb = {φb,m}M
m=1. As the block

size is 4 × 4, M = 16. The M vectors φb,m of two of these bases
are displayed on figure 3.
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Fig. 1. Grouping configurations in NB = 12 directions. A direction
corresponds to a basis.

Fig. 2. Discrete orthonormal Legendre bases in dimension 2 to 4.

2.2. Bandelet analysis

The bandelet analysis process is the following:
Wavelet transform of the image
foreach subband do

Split the subband into blocks 4× 4
foreach block f do

foreach basis Bb of the dictionary D do
Transform the block of wavelet coefficients f in
the basis Bb:

fb =

M∑
m=1

< f, φb,m > φb,m

Quantize the coefficients fb: fbΔ = QΔ(fb)
end
Keep the representation f∗

bΔ which minimizes the
rate-distortion criterion:

L(fbΔ) = D(fbΔ) + λR(fbΔ) (1)

f∗
bΔ = arg min

{fbΔ}NB
b=0

L(fbΔ)

end
end

In the previous formula, QΔ represents a dead zone uniform
quantizer and Δ the quantization step. The best representation f∗

bΔ

of one block may be its representation into quantized wavelet co-
efficients denoted by f0Δ with b = 0. In this case, no bandelet
transform is applied to this block.

2.3. Rate-distortion criterion

The distortionD(fbΔ) in the rate-distortion criterion (1) is the square
error between the coefficients fb and the quantized coefficients fbΔ:

D(fbΔ) = ‖fb − fbΔ‖2

The estimated bit-rate R(fbΔ) is decomposed into two parts:

R(fbΔ) = RC(fbΔ) + Rb

Fig. 3. Basis vectors for directional bases #1 and #2 of R
16.

The first partRC(fbΔ) is the bit-rate needed to encode the quantized
coefficients fbΔ and is estimated by:

RC(fbΔ) =

M−1∑
m=0

log2

1

p(fbΔ)

The probabilities p(fbΔ) are estimated by the histogram of wavelet
coefficients in each subband.
The second partRb is the bit-rate needed for the signaling of the best
basis according to the rate-distortion criterion (1) and is estimated
by:

Rb = − log2 pb with pb =

{
0.5 if b = 0

0.5/NB if b ∈ {1, . . . , NB}

This gives greater importance to the wavelet representation of the
coefficients of a block (b = 0). As in [7], the Lagrangian parameter
λ in the rate-distortion criterion (1) is set to:

λ =
3Δ2

4γ0
with γ0 = 7.

The quantized bandelet coefficients are encoded using an adap-
tive arithmetic coder. The signaling of the best basis for each block
is also coded using an arithmetic coder and is part of the final bit-
stream. In section 5, the same compression scheme is used but with
new dictionaries of bases. Note that on-board spacecraft, embed-
ded coder with lower complexity are preferred. For example Rice-
Golomb codes are used in the bit plane encoder of the CCSDS [4].

3. ANALYSIS OF INTRA-BLOCKS WAVELET
CROSS-CORRELATIONS

This section analyzes first the intra-block cross-correlations between
each pair of wavelet coefficients in 4×4 blocks and second the abil-
ity of the directional bases to capture these correlations. A bandelet
analysis has been performed on a training set of 7 large (1024 ×
1024) 12-bit satellite images. This analysis is done off-line and dif-
ferent images were used for the tests of compression performance in
section 5. The quantization step as been set to Δ = 40. With this
quantization step, the resulting bit-rate is about 2 bpp which is the
targeted bit-rate for on-board compression.

For the analysis of intra-band wavelet correlations, the subbands
HL1, LH1 and HH1 of the wavelet transforms of the whole training
set of images are processed separately. NB sets of blocks of wavelet
coefficients are build. The set #b contains the blocks of wavelet coef-
ficients f for which the rate-distortion criterion (1) is minimized by
the quantized representation fbΔ. In other words, the set #b contains
the blocks of wavelet coefficients which should be transformed in the
directional basis Bb for the compression. This basis corresponds to
the grouping configuration #b in figure 1. Once these NB sets have
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Fig. 4. Correlation matrices between the 16 wavelet coefficients of
a block for the sets #1 and #2 in the three subbands HL1, LH1, and
HH1. The wavelet coefficients are numbered column-wise in the
blocks.

been built, the correlation matrix is computed for the blocks f in
the same set. This shows the intra-block cross-correlations between
wavelet coefficients. Correlation matrices of the sets #1 and #2 in
the subbands HL1, LH1, and HH1 are displayed in absolute values
on figure 4. The wavelet coefficients are numbered column-wise in
the blocks.

On figure 4, strong correlations can be observed between hor-
izontally adjacent wavelet coefficients in the subband HL1 and be-
tween vertically adjacent wavelet coefficients in the subband LH1.
These negative correlations are due to the high-pass filtering in the
wavelet decomposition. On the correlation matrices of figure 4,
the coefficients associated to the groupings shown on figure 1 are
marked with a cross. For example, in configuration #1, the coeffi-
cients 2 and 13 are linked together, so there is a cross on the cor-
relation matrices at the coordinates (2,13) and (13,2). Strong corre-
lations were expected at these coordinates due to the groupings and
the rate-distortion minimization. Nevertheless, it can be seen that
the cross-correlation between linked wavelet coefficients are small,
except for the coefficients linked with their neighbors in the vertical
or horizontal directions. The same observation can be done for all
the grouping configurations of figure 1.

In conclusion, the directional bandelet bases fail in catching di-
rectional correlations. This can be explained by the low correlations
between non-adjacent wavelet coefficients and in other directions
than horizontal or vertical. Furthermore, consider a subband of an
image and the best directional bases for each block of that subband.
It can be observed that only a few of them correspond to an underly-
ing edge in the good direction. Yet, compression results with these
directional bases are good. Consequently, these directional group-
ings are kept in the new grouping configurations proposed in the
next section.

4. NEW DICTIONARIES OF BASES

It has been shown in section 3 that the strongest correlations are
between wavelet coefficients which are adjacent in the horizontal di-
rection in the HL subbands and between wavelet coefficients which
are adjacent in the vertical direction in the LH subbands. Correla-
tions between coefficients linked in other directions are low. Thus,
to enhance the compression performance, two different approaches
are proposed.

Fig. 5. Extended grouping configurations inNB = 12 directions for
the subbands HL.

Fig. 6. Bases #2 for the HL subbands extracted from the new dictio-
nary of groupings and the dictionary built by PCA.

Fig. 7. Comparisons of intra-band cross-correlations between the
wavelet coefficients (dashed line), the bandelet coefficients (solid
line), the coefficients in the new bases of groupings (bold line), and
in the bases build by PCA on the training image set (thin line). Corre-
lation coefficients have been computed on a test image set and sorted
in decreasing order. Only the first 64 correlation coefficients are plot-
ted for the blocks in the set #1 and #2. Cross-correlations in the new
bases are lower than the ones in the bandelet bases.

4.1. Extended groupings

The groupings of the bandelet transform are extended in the vertical
and horizontal directions. As the correlations are different in the sub-
bands, the new grouping configurations differ for the subbands HL,
LH and HH. Parallel groupings of same size are horizontally linked
in the HL subbands, they are vertically linked in the LH subbands
and linked in either directions in the HH subbands. The new group-
ing configurations for the HL subbands are plotted in figure 5. As
groupings are now bi-dimensional, 2D bases of Legendre polynomi-
als have been built by tensor products of 1D Legendre polynomials.
This finally results in one dictionary ofNB = 12 bases for each HL,
LH and HH subband. The basis #2 extracted from the dictionary for
the subband HL is displayed on figure 6.

Figure 7 shows that the cross-correlations between coefficients
in the new bases of groupings are lower than the ones in the bandelet
bases. Since the grouping configuration #1 has not been changed in
the subband HL1 (figure 5), the results are the same for the bandelets
and the new coefficients in this case.
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4.2. Bases learned by PCA

Cross-correlations can also be eliminated by PCA on each of theNB
sets of blocks per subband built in section 3. Those PCA generate
NB bases which define one dictionary of linear transforms per sub-
band learned on the training set of images. On figure 6, the basis
built by PCA on the set of blocks #2 extracted from the subbands
HL is displayed. Figure 7 shows that on the test image set, the cor-
relations between coefficients in bases learned by PCA are very low.

The dictionaries of bases are then used to compress the test im-
age set to obtain the results shown in section 5. We shall see that
both approaches to build new bases give better compression results
than the bandelets.

5. COMPRESSION RESULTS

In this section, the results obtained with the new dictionaries are
compared to the results obtained with the bandelet transform, the
CCSDS coder for on-board spacecraft compression and JPEG2000.
The compression results reported on figure 8 are averaged results
obtained on six Earth observation images from PLEIADES satel-
lite and PELICAN airborne sensor. PLEIADES first satellite is to be
launched in 2009 and images used are simulated images. PLEIADES
and PELICAN images have a spatial resolution of respectively 70 cm
and 20 cm, their size is 1024 × 1024 and their bit-depth is 12-bits.
The target PSNR for on-board compression is 50 dB.

For the evaluation of the performance, the same lossy wavelet
transform as in [4] is used: 9/7 CDF (Cohen-Daubechies-Feauveau)
filters and three levels of decomposition. Differences between the re-
sults obtained with the two proposed transforms, the bandelet trans-
form and the wavelet transform, all followed by the same adaptive
arithmetic coder, are plotted on figure 8. The gain over the wavelet
transform is more than 0.8 dB at a bit-rate of 2 bpp. Although, the
computational complexity of the proposed transforms are the same
as the computational complexity of the bandelet transform, at a bit-
rate of 2 bpp, the quality of the decompressed images is increased by
more than 0.1 dB with the bases built with the extended groupings
and by more than 0.2 dB with the bases learned by PCA.

It can also be seen on figure 8, that JPEG2000 performance is
about 0.5 dB higher than the results obtained with the bases learned
by PCA. The performance of the CCSDS coder is 0.5 dB lower than
the results obtained with the extended groupings. The difference
in performance between the CCSDS coder and JPEG2000 is due
to the choice of low complexity in the CCSDS recommendation.
Indeed for on-board compression, real-time processing is required
with space qualified electronics. Thus, for on-board compression,
the design of a low complexity embedded coder adapted to the post-
transforms should be inspired from the CCSDS coder.

6. CONCLUSION & PERSPECTIVE

This study has shown that it is possible to enhance the compres-
sion performance by decorrelation of wavelet coefficients. In this
approach, the bandelet transform can be outperformed by exploit-
ing correlations between vertically or horizontally adjacent wavelet
coefficients in accordance to the direction of the high-pass wavelet
filter. We have also shown that there exist only weak correlations
in other directions than the vertical or the horizontal. To further en-
hance the decorrelation, we have built bases by performing a PCA on
the different sets of blocks built by bandelet analysis. Even though
there is scarcely visible directional information in these bases, the
improvement in decorrelation of the coefficients results in a improve-
ment of compression performance. Thus, the directional properties
of the bases are not essential to improve the compression. At the

Fig. 8. Comparison of compression performance using the extended
groupings and the bases learned by PCA to the bandelet transform.
The results are plotted relative to the compression performance of
the wavelet transform coupled to the same arithmetic coder as the
other transforms. JPEG2000, and the CCSDS use different coders.

scale of 4 × 4 blocks, compression is mainly improved in the two
directions of the wavelet filters. At last, to achieve even better com-
pression performance, an adapted EBCOT coder can be applied after
the proposed transforms. However, on-board compression requires
a low computational complexity and thus the design of a coder in-
spired from the CCSDS recommendation should be preferred.
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