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Abstract—Most of the signals in nature are piecewise smooth. One of
the simple and yet efficient models for representing smooth signals is the
class of piecewise polynomials. In this paper compression of this class
of functions is considered. Some bounds are derived for the ε-entropy
of this class of functions. These bounds show us the best performance
the optimum compression scheme can have. By comparing it with the
performance of traditional binary trees, it is demonstrated that the rate-
distortion behavior of binary tree is far from optimum. We will then
show that a simple modification of binary trees results in much better
performance binary tree algorithms. This modification will retain all the
advantages of binary trees.

Index Terms- Entropy, signal, data compression, quadtree, piece-

wise polynomial

I. INTRODUCTION

A. Problem and Framework

Most of the signals in nature are piecewise smooth. One of the

simple and yet efficient models for representing smooth signals is

the class of piecewise polynomials [3], [4], [6]. For example this

class of functions can be used to model the edges in natural and

cartoon images [1], [13] . Therefore, a good representation and a

good compression scheme for this class of functions will lead us to

good models for different types of signals. In this paper, this class of

functions is studied. The main goal is to find a simple and practical

compression scheme with close to optimum performance. In order

to analyze each compression scheme we need the following: 1) A

framework for measuring the quality of each algorithm, and 2) the

performance of the optimum algorithm in this framework. There are

at least two frameworks in the approximation theory and information

theory literature. One of them is called approximation power [14] and

the second one is called rate-distortion (or equivalently distortion-

rate) behavior [2], [9]. Let F denote a class of functions. DF is

called a dictionary for F if and only if any element of F can be

written as a linear combination of the elements of DF . In nonlinear

approximation, the asymptotic behavior of deviation from the best

k term approximation is a measure of quality for each dictionary

DF . Although approximation power may work for comparison of

two orthonormal bases (like wavelet and Fourier for L2 functions),

it is not the right framework for overcomplete dictionaries, since the

cardinalities of the dictionaries do not play any role. Rate-distortion

theory addresses this problem by considering rate and distortion

simultaneously, where rate is the total number of bits used to represent

the compressed signal and distortion is the distance between the

original and compressed signal. There are two closely related rate-

distortion theories: Shannon’s rate-distortion [9] and Kolmogorov’s

ε-entropy [7]. Shannon’s theory deals with stochastic sources. It

ignores the processes that have very small probabilities and just

codes the rest. Kolmogorov’s ε-entorpy, on the other hand, deals with

deterministic sources and enforce the algorithm to code the signals

such that the distortion of any signal after compression is less than the

desired level. Since we do not have any probabilistic model for the

space of piecewise polynomials and all of the functions are equally

important in our analysis, we will use Kolmogorov’s ε-entropy instead

of Shannon’s well known rate-distortion theory. It should also be

mentioned that there is an interesting connection between these two

theories which is explained in [10].

B. Related Work

There exists some related work in the literature as well. Prandoni

et al. [3] derived the rate distortion behavior of an oracle method and

proved that traditional bases such as wavelet and Fourier are not op-

timum for piecewise polynomial functions. They have also proposed

a dynamic programming algorithm to implement their oracle method.

But this algorithm suffers from a few problems. First, although

Prandoni’s algorithm uses dynamic programming, the computational

complexity is still very high. Second, it cannot be extended to higher

dimensional signals. Third, it uses some prior knowledge about the

number of polynomial pieces which is usually not available. In

order to address these problems binary tree partitioning (or in two

dimensions quad-tree partitioning [1]) algorithm with lagrangian cost

function has been proposed [4]. This algorithm has some advantages:

1) it is simple and efficient. 2) Some automatic methods have been

proposed to set the value of parameters for a given achievable rate-

distortion [15]. 3) By choosing the dictionaries properly, they will

result in higher dimensional coding schemes [1], [13]. 4) They are

very flexible in the sense that they can be easily modified to lead to

new compression schemes. In spite of all these advantages, it will be

shown that the performance of binary partitioning(derived in [4]) is

far from the upper bound that we will derive for ε-entropy. Shukla

et al. [4] improved the performance of binary trees by adding a join

step to the algorithm. But, in order to have all the advantages of

binary partitioning it is more interesting to modify binary partitioning

algorithm, instead of adding a second stage to it. Furthermore, by

using the join step we will loose the automatic parameter selection.

Our modification of binary trees consists of permitting the division

of intervals into two subintervals of nonequal length. It should be

mentioned that the join step can also be used for the new binary

trees as well.

The organization of this paper is as follows: In section II, the

concept of Kolmogorov’s ε-entropy for compact spaces is reviewed.

Then some bounds for the ε-entropy of piecewise polynomial func-

tions will be derived. In section III, the binary partitioning algorithm

will be discussed in a general framework. Also the limitations of the

traditional binary trees used in signal processing will be discussed

in this section. In section IV a greedy partitioning algorithms will

be introduced. In spite of its greedy nature it has some optimality

properties that will be discussed in that section.
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II. KOLMOGOROV’S ε-ENTROPY OF THE CLASS OF PIECEWISE

POLYNOMIAL FUNCTIONS

Let F ⊂ L2([0, 1]) be a compact class of functions. The goal is

to compress the functions in this space such that the distortion (the

L2-norm of the difference between the original and the compressed

function) is less than ε and the question is: what is the least number

of bits needed to code the functions in this space? The answer to this

question is given by Kolmogorov [7]. The ε-entropy of a compact set

F is shown with Hε(F ) and is defined as

Hε(F ) = log2 Nε(F ), (1)

where Nε(F ) is the minimal number of sets in an ε-covering [8],

[7], [12] of F .

As may be noted, for coding an element of F with the distortion

at most equal to ε the best achievable rate is Hε(F ). Consider the

space of piecewise polynomial functions on an interval I to be

represented by PolyQ
N (I) in which N is the maximum degree of

the polynomials on this interval and Q is the maximum number

of singularities. A singularity is a point at which the function is

not infinitely differentiable. Let BPolyQ
N (I, A) denote the set of

all piecewise polynomials of maximum degree N over I with Q
singularities which are bounded by A, i.e. ,

BPolyQ
N (I, A) = {f ∈ PolyQ

N (I) | sup
x∈I

|f | ≤ A}. (2)

We have proved in [5] that BPolyQ
N (I, A) is compact. Therefore

ε-entropy can be defined for this space. In the following theorems

L2 norm is considered as the metric.

Theorem 2.1: There exist two positive constants B1 and B2 such

that the epsilon entropy of the space BPoly0
N ([0, 1], A) satisfies the

following inequalities

B1 + log (
1

ε
) ≤ 1

N + 1
Hε(BPoly0

N ([0, 1], A))

≤ B2 + log (
1

ε
),

where B2 = log
(

A
√

N+1
2

)
and B1 = log

(
A
C

)
, in which C is the

constant appearing in [5].

Proof: The proof of this theorem is given in [5]. It should be

mentioned that since we use these bounds in the high bit rate (or low

distortion) regime, the constants B1 and B2 are not important.

Theorem 2.2: The ε-entropy of the space BPolyQ
N ([0, 1], A) sat-

isfies the following two constraints

C1 + (N + 1)(Q + 1) log (
1

ε
) ≤ Hε(BPolyQ

N ([0, 1], A))

≤ C2 + (N + 3)(Q + 1) log �1
ε
� (3)

where,

C1 = (N + 1)(Q + 1) log

(
A

C′

)
,

C2 = �(N + 3)(Q + 1) log

(
A(Q + 1)(N + 3)

(2
√

N + 1)(N+1)/(N+3)

)
�

Proof: In order to prove the upper bound, assume that the [0, 1]
is partitioned into n1 equispaced subintervals. We choose Q points

out of these n1 points in
(

n1
Q

)
different ways. For each chosen

point, the point next to it will also be considered. Let’s call these

points 0 = d̂0, d̂1, . . . , d̂2Q+1 = 1. For each interval [d̂2i, d̂2i+1),

n2 polynomials will be picked from all the polynomials between the

selected points. The way these polynomials are chosen is explained

in the proof of theorem 2.1 in [5]. As a brief explanation, these points

are placed on a uniform grid in this N -dimensional subset. Therefore,

the total number of functions(balls) we consider is:
(

n1
Q

)
n2

Q+1. Let

D be the set of all these functions and f be an arbitrary function in

the space BPolyQ
N ([0, 1], A). The distortion in approximating this

function is minf̂ ‖f − f̂‖ where f̂ ∈ D. The distortion can be upper

bounded by:

‖f(x)− f̂(x)‖L2(I) ≤∑
‖f(x)− f̂(x)‖L2[d̂2i+1,d̂2i+2]

+
∑

‖f(x)− f̂(x)‖L2[d̂2i,d̂2i+1] (4)

in which ‖f‖L2(I) = (
∫

I
f2)

1
2 .

Assume that f̂ is chosen from D with the following method: First

the decision is made on the d̂2i−1 points of f̂ . d̂2i−1 is chosen such

that it is less than or equal to di and among all the points on the 1/n1

grid that satisfy this condition, is the closest to the point di. Therefore

we have: |di−d̂2i−1| ≤ 1/n1 and di ≤ d̂2i since d̂2i = d̂2i−1+1/n1.

Then in the intervals [d̂2i, d̂2i+1] find the closest polynomial in that

part that is also part of D. With this choice of approximation, each

term on the second line of (4) is less than or equal to 2A
√

1/n1.

Also according to the previous theorem by choosing the polynomials

properly, the error of the terms on the third line could be made less

than K( 1
n2

)
1

N+1 , where K = A
2

√
N + 1. Therefore, the total error

is less than or equal to:

‖f − f̂‖ ≤ (Q + 1)K(
1

n2
)

1
N+1 + 2(Q + 1)A(

1

n1
)

1
2 ≤ ε (5)

The last inequality is imposed in order to keep the distortion less

than ε. The number of balls is equal to
(

n1
Q

)
n2

Q+1. The goal is to

find an upper bound for the number of balls and the number of balls

can be upper bounded by n1
Q+1n2

Q+1. With this approximation the

problem is simplified to:

minimize nQ+1
1 nQ+1

2

s.t. (Q + 1)

[
K(

1

n2
)

1
N+1 +

2A√
n1

]
≤ ε (6)

Instead of solving this problem for integer numbers, we assume

that n1 and n2 are not necessarily integers. Then the results will

be rounded to the closest integer above them. The new problem is

geometric programming [11]. By changing the variables and using

KKT conditions upper bound can be found.

For proving the lower bound consider a subset of

BPolyQ
N ([0, 1], A) consisting of all functions in BPolyQ

N ([0, 1], A)
that have singularities at { 1

Q+1
, 2

Q+1
, . . . Q

Q+1
}. Since this is a

(N + 1)(Q + 1) dimensional space, according to the equivalence of

L∞ and L2 norms of any finite dimensional space, i.e. ,

c′‖f‖L2 ≤ ‖f‖L∞ ≤ C′‖f‖L2, (7)

and the fact that the L∞-norm of these signals is bounded, the L2

ball {f | ‖f‖L2 ≤ A
C′ } is included in this space. Using the same

argument used in theorem 2.1, at least 2C1( 1
ε
)
(N+1)(Q+1)

will be

necessary to code this L2 ball, where

C1 = (N + 1)(Q + 1) log

(
A

C′

)
, (8)

and the proof of the theorem is complete.

In the last theorem, ε is playing the role of maximum distortion

and the number of balls is related to the number of bits that should

be used for compressing the signal at the ε distortion level. But it is

also possible to look at this problem from a different point of view.

Assume that the number of bits that can be used for representing the

1182



signals is fixed at some bit rate R and the goal is to minimize the

distortion.

Theorem 2.3: For a fixed number of bits R the least achievable

distortion satisfies the following inequalities

k12
−R

(N+1)(Q+1) ≤ D(R) ≤ k22
−R

(N+3)(Q+1) , (9)

where k2 = A(Q + 1)(N + 3) and k1 = A
C′ .

Proof: It follows directly from theorem 2.2, by noting that(
2
√

N + 1
)(N+1)/(N+3) ≥ 1.

Since the upper bound is found by an exhaustive search through

a very large dictionary, it is not practical. The goal of the next two

sections is to find a good method for compressing these kinds of

signals. The desired method should have the good characteristics

mentioned in the introduction.

III. BINARY PARTITIONING ALGORITHM

As explained in the introduction, wavelet and the other traditional

algorithms cannot perform well on this class of functions. In order

to solve the problem Shukla et al. [4] have proposed an interesting

algorithm which is called Binary Tree Partitioning. The idea of

this algorithm is somewhat similar to the idea of wedgelet [1]. By

using binary partitioning or quad partitioning these two algorithms

partition the signal into some pieces and then code each piece with

a polynomial (or wedge like patches in wedgelet). The complete

description of the algorithm is as follows: Let P j = {Ij
1 , Ij

2 , . . . , Ij
L}

be a partition of the interval [0, T ) at level j with the following

characteristics: First, each Ij
i ⊂ [0, T ) is a half open interval e.g.,

Ij
i = [di−1, di). Second,⋃

k

Ij
k = [0, T ), Ij

k

⋂
Ij

i = 
 ∀k �= i (10)

For each interval Ij
k a cost function is defined as:

cj
k =

∥∥∥[x(t)− Po(t)]1I
j
k
(t)

∥∥∥
L2([0,T ))

+ λ2Rj
k (11)

where Po(t) is the best polynomial of degree N that minimizes the

first term of the cost function, Rj
k is the required rate for coding that

part of the tree and λ is a real number. The binary tree at level j,

divides each Ij
k with |Ij

k| = T2−j at its midpoint to two smaller

intervals Ij+1
2k−1 and Ij+1

2k if:

cj
k > cj+1

2k−1 + cj+1
2k (12)

By starting from P 0 = {[0, T )} and applying the same algorithm

to the partitions iteratively one will get to the point that none of the

partitions can be divided more. The final partition is the one which

is used in coding. The intervals that are divided into two pieces are

called internal nodes and the intervals that cannot be divided are

called terminal nodes or leaves. This terminology will be used in this

paper. Let me summarize the binary tree partitioning algorithm in a

different way that will lead us to a more general framework. Assume

that at each scale j, a set of signals is given Φj = {φj
k}

Kj

k=1. At each

level the best thing one can do is to replace a signal in one of the

intervals with one of the signals in the set corresponding to the scale

of that signal. In the case of binary partitioning algorithm explained

before each set includes a discrete version of the polynomials of

degree N that are defined in the interval of size T2−j . It can be

proved that for this algorithm DBT (R) ≥ α0

√
R2−α1

√
R which is

far from the ε-entropy bounds(the rate of decay here is 2−α
√

R and

2−βR in the entropy bounds). Since the proof of this theorem is

very similar to the proof given in [4] we ignore this proof. In [5]

it is proved that by enlarging Φj one can get better rate distortion

characteristic from the binary tree algorithm. In this paper we will

consider a different modification of the binary tree algorithm. The

question that will be answered in the next section is that what

happens in the rate-distortion sense if we generalize the idea of binary

partitioning?

IV. GENERALIZED BINARY PARTITIONING

In this section the goal is to generalize the binary partitioning

algorithm explained in the last section in order to improve its per-

formance. We will show that although the algorithm that is proposed

here is greedy in its nature, its rate-distortion characteristic is very

close to the upper bound of ε-entropy. Because of its greedy nature it

is very fast and because of its tree structure it can be easily extended

to higher dimensional signals (the partitions will be rectangular). In

the binary tree partitioning algorithm which was explained in the

previous section each partition at each level is divided into two

intervals with the same size (this is the case if the cost function

is improved). But one can divide the interval into two nonequal

subintervals. This kind of binary partitioning is called generalized

binary partitioning. In coding a signal by this method, the partition

points should also be coded. In order to explain the procedure let’s

assume that at some level j an interval Ij
k = [tj

kstart
, tj

kstop
) exists.

For a given partition point p ∈ Ij
k, Ij

k can be partitioned into these

two subintervals: Ij+1
kp<

= [tj
kstart

, p) and Ij+1
kp>

= [p, tj
kstop

);

The problem of finding the partition point p is:

(p∗, P ∗1 , P ∗2 ) = arg min
p∈I

j
k

,P1∈Φ(I
j+1
kp<

),P2∈Φ(I
j+1
kp>

)

‖f(t)− P1(t)1I
j+1
kp<

− P2(t)1I
j+1
kp>

‖ (13)

where Φ is the set of signals. The next lemma shows that although

the algorithm is greedy it will find the Q singularity points in at most

2Q + 1 steps.

Lemma 4.1: Let the original function f be in BPolyQ
N (I, A).

Suppose that we have infinite precision in choosing the singularity

points. If |λ| is zero and Φ is the set of polynomials of degree N ,

the maximum number of partition points is 2Q + 1.

Proof: Assume that at some stage of the algorithm, the partition

point sj is selected from interval [di, di+1) and this is the first time

one of the partition points is in this interval. We want to prove that

none of the other partition points will be in the interval (di, di+1).

Assume that sr is found to be the optimum selection point and di <
sr < di+1. Before selecting sr the closest points to sj were sl and

sk. Without loss of generality assume that sl ≤ sr ≤ sj . The total

error of this approximation is:

‖f − f̂‖2L2[sl,sj) = ‖f − P1‖2L2[sl,sr) + ‖f − P2‖2L2[sr,sj)

= ‖f − P1‖2L2[sl,sr) (14)

In which P1 and P2 are two polynomials. The second inequality

comes from the fact that in the interval [sr, sj), f is a polynomial

and the distortion would be zero. The last term can also be written

as:

‖f − P1‖2L2[sl,sr) = ‖f − P1‖2L2[sl,di)
+ ‖f − P1‖2L2[di,sr)

≥ ‖f − P1‖2L2[sl,di)
(15)

and the equality is achievable if and only if di = sr or P1 = P2.

But if P1 = P2 the algorithm will not divide the interval any more

(because the cost function has the notion of Rate as well). Therefore,

the only possible case is di = sr and between any two singularity

points the algorithm will at most find one extra point. The lemma is

proved.
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Lemma 4.2: Let the original function f be in BPolyQ
N (I, A).

Suppose that we have finite precision in choosing the singularity

points. If |λ| is zero and Φ is the set of polynomials of degree N ,

the maximum number of partition points will be 3Q + 1.

The proof of this lemma is very similar to the proof of the previous

one. The only thing that should be mentioned here is that 2Q points of

these 3Q+1 points are the points closest to the singularity points of

the main function and therefore 2Q+1 of these points are independent

and should be coded for the encoder.

The last thing that should be mentioned here, is that since the

encoder solves a least squares problem to find the polynomials in

each interval, it does not need to do exhaustive search and also

the encoder will have the coefficients of the polynomials exactly

(although it quantizes the coefficients for transmission).

Theorem 4.3: If the original function f is in BPolyQ
N ([0, T ], A)

the distortion rate behavior of generalized binary partitioning with

polynomial dictionary is upper bounded by:

D(R) ≤ c2
− R

2(N+3)(Q+1) (16)

Proof: The complete coding scheme includes coding the struc-

ture of the partitions (or partition points) in addition to the polynomi-

als in each partition. Let s0, s1, s2, . . . s2Q+1, s2Q+2 be the partition

points, where s0 = 0 and s2Q+2 = T . In order to code these selection

points we divide the interval [0, T ] into 2Rs equispaced partitions.

When a selection point is in one of these intervals, it is approximated

by the infimum of that interval. Let ŝ1, ŝ2, ..., ŝ2Q+1 represent the

coded partition points. The total error is:

‖f − f̂‖L2[0,T ] ≤
2Q+1∑
i=0

‖f − f̂‖L2[si,ŝi+1)

+

2Q+1∑
i=0

‖f − f̂‖L2[ŝi,si)
(17)

If we code each polynomial by Rpi bits, then each term in the first

summation is bounded by [5],

‖f − f̂‖L2[si,ŝi+1) ≤ A

2
|Ii| 12 (N + 1)

1
2 2

−Rpi
N+1 (18)

The terms in the second summation of (17) can be divided into two

groups. Q of them correspond to the singularity points and Q + 1
of them are some points in between. If one of the singularity points

(which is the i’th selection point) is coded with Rs bits the resulting

distortion would be bounded with:

‖f − f̂‖L2[ŝi,si)
≤ 2AT

1
2 2−

Rs
2 (19)

But the error in the other selection points doesn’t change the total

error. Therefore the total distortion of compression is:

‖f − f̂‖L2[0,T ] ≤
2Q+1∑
i=0

A

2
T

1
2 (N + 1)

1
2 2

−Rpi
N+1

+Q2AT
1
2 2−

Rs
2 (20)

In order to get better rate distortion characteristic this expression

should be minimized subject to the bit rate constraint:

2QRs +

2Q+1∑
i=1

Rpi ≤ R (21)

KKT conditions will result in Rpi = Rpj = Rp ∀i, j, and:

(
Rp

N + 1
)− Rs

2
= α (22)

in which α = 1
2

log2
1

N+1
; This equation is true for high bit rate

regime and for low bit rate regime Rs should be equal to zero (water

filling). By some simple calculations we will reach (16).

Although the performance of this algorithm is not the same as the

upper bound of rate-distortion, it is close. There are some other ways

to improve the performance of the algorithm. For example by joining

the partitions [4] of this tree, it can be shown that the performance

will be the same as the upper bound of ε-entropy.

V. CONCLUSION

In this paper compression of the class of piecewise polynomials is

considered. The importance of this class is due to the fact that most

of the signals in nature are piecewise smooth and piecewise smooth

signals can be approximated with the desired precision with one of

the signals in this class. Some bounds for the Kolmogorov’s ε-entropy

are calculated. These bounds show the limits of compression. Since

the performances of the traditional compression algorithms such as

wavelet and Fourier are far from the optimal distortion rate behavior,

we proposed a new method by modifying the binary tree partitioning

algorithm in order to get closer to the bounds. The proposed algorithm

is the generalized binary tree partitioning. It is shown in the paper

that in spite of its greedy nature, this algorithm has some optimality

properties and can detect the singularity points correctly in a short

number of trials (two times the number of discontinuities).
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