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ABSTRACT 

 
Normal mapping is one of the most essential technologies 
for realistic three-dimensional computer graphics. In con-
ventional normal map compression such as 3Dc, only the x 
and y components are encoded and the z components are 
restored based on the normalizing condition. In this paper, 
we present an intuitively comprehensive error analysis for 
this approach. As a result, we reveal in what condition com-
pression error becomes larger. We also present a non-linear 
quantization algorithm based on the formula for better com-
pression performance than the conventional approaches. 
Experimental results using 300 normal map demonstrate that 
the PSNR is improved by 0.29 dB on average. Our algo-
rithm is compatible with random access and highly-parallel 
processing on GPU. 
 

Index Terms— Normal map, compression, error analy-
sis, non-linear quantization, 3Dc 
 

1. INTRODUCTION 
Normal mapping [1], which is extended from bump mapping 
[2], is an essential technology in realistic three-dimensional 
(3D) computer graphics (CG). Normal mapping is a tech-
nology to express bumpy texture using simple polygons and 
extra texture data called normal maps. Normal maps are the 
maps of 3D normal vectors of the objects’ surface stored in 
2D arrays. Normal maps are often expressed as 24-bit full 
color bitmaps based on the following equation (thus, x, y, 
and z values are discrete and such data format are called 
8x8x8 normal maps): 

( ) ( )2, , , , 1
255

x y z R G B= −    (1) 

where (x, y, z) and (R, G, B) represent the element values of 
a normal map and their corresponding pixel values, respec-
tively. The [-1, 1] range of normal vectors is mapped to in-
teger values of [0, 255] based on (1). Also, the length of the 
normal vectors is normalized to one: 

2 2 2      1x y z+ + = .    (2) 
Here, the z component is always equal to or greater than 
zero because normal vectors point to the direction of the 
outer side of the surface: 

1 1, 1 1, 0 1x y z− ≤ ≤ + − ≤ ≤ + ≤ ≤ +   (3) 

From (2) and (3), the z components can be eliminated since 
they can be restored by the simple calculation: 

2 21z x y= − − .    (4) 
Only by taking the inner product between the illumination 
vectors and the normal vectors, we can give more reality to 
the shading without using a lot of polygons. In addition, the 
shading can be calculated efficiently even if the light source 
position or the view point changes. 

Since the bus bandwidth between CPU and GPU is 
quite limited, the data transfer of the high quality and large-
seized normal maps is becoming a significant issue. Al-
though normal maps can be expressed as regular bitmaps as 
discussed above, conventional 2D image compression algo-
rithms such as JPEG or JPEG2000 are not applicable. This 
is due to the requirements peculiar to GPU-based processing 
such as random accessibility (i.e., fixed-rate compression) 
and the feasibility for the massively parallel processing. In 
this regard, there has been a number of dedicated normal 
map compression algorithms [3]-[12] developed so far 
though they are not always very efficient from the view point 
of compression ratio. 

Ref. [3] was the first contribution to the normal map 
compression in which how much accuracy (resolution) is 
needed for human eyes instead of using 32-bit floating point 
accuracy was discussed. In [5], general-purpose texture 
compression algorithms using VQ was applied. ATI devel-
oped a dedicated algorithm called 3Dc [6] based on a block 
truncation algorithm [13]. This algorithm is now a de-facto 
standard supported by major GPU vendors. Later on, the 
3Dc algorithm was improved by dynamically changing the 
bit allocation depending on the data distribution in the sub-
blocks [7] and by the near-optimal principal component 
analysis [8]. Another modification of the 3Dc algorithm can 
be found in [9], in which all-zero sub-blocks are treaded in a 
different way for more efficient compression. A variable bit 
rate encoding approach [10] and hybrid method employing 
vector quantization (VQ) and Huffman encoding [11][12] 
were also presented so far. In many cases, the components 
are neglected based on (4). However, there is little work to 
investigate how the error in the z components is affected by 
the lossy compression of the x and y components. 

In this point of view, the authors proposed an error 
model for the normal map compression algorithms [14]. 
However, the equation was difficult to understand intuitively. 
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In addition, how to apply the error model to better compres-
sion was not discussed in [14]. The authors confirmed that  
judging whether to include the z components or not as pro-
posed in [14] does not work properly with the 3Dc-based 
algorithms. 

Therefore, the purpose of this paper is to establish a 
more comprehensible error analysis model of the z compo-
nent elimination and apply it to the better compression. In 
our analogy, we demonstrate that the error in the z compo-
nents are the functions of not only the errors in the x and y 
values but the z value itself. Besides, we demonstrate a non-
linear quantization algorithm based on our model, in which 
PSNR is enhanced by 0.29 dB on average as compared to 
3Dc. This is also better than the e3Dc algorithm [7] 
(0.22 dB on average for our data). The algorithm can also be 
embedded into the other 3Dc-based approaches [7][8] for 
more efficient compression. In addition, the proposed non-
linear quantization is compatible with random access and 
parallel computing on GPU. 
 

2. ERROR MODEL AND COMPRESSION 
 
Let us begin from [14] due to the limited length of the paper. 
Assume that the original values of the i-th x and y compo-
nents values are xi and yi and the decoded values are xi’ and 
yi’. The restored z component (zi’) obtained from (4), would 
become 
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where C(1/2, n) represents the generalized binomial coeffi-
cients. 

As can be observed from (5), zi’ is affected not only by 
the accuracy of the lossy compression in xi and yi, but also 
the original z component (zi). In particular, it is expected that 
if the original z value is close to zero (i.e., the texture is 
more random and rough), the error would become very large. 
Since the normal map technology was originally developed 
to express the roughness of the surface, this is a significant 
problem. 

For instance, in the 3Dc [6], the x and y planes are di-
vided into 4x4 sub-blocks and the maximum and the mini-
mum values are expressed with 8-bit accuracy. Then, the 
intermediate values are expressed with 3-bit (eight values) 
accuracy by a simple linear quantization. Therefore, the bit 
rates become 8 bpp (8x2+3x16 = 64 bits for each sub-block). 

Although bit allocation is dynamically changed in some 
3Dc-based approaches [7][8], quantization is still linear and 
the error characteristics as presented in (5) is not taken into 
consideration. 

In this paper, we present a non-linear quantization ap-
proach based on the analysis in (5) by allocating more dense 
steps when  |x| or |y| is close to one (e.g., near-zero region in 
the z components). Although our non-linear quantization 
would decrease the error in the z components, the errors in 
the x and y components would become larger instead. There-
fore, the optimal encoding is in the trade-off between the 
error reduction in z and the error increase in x and y. 

Since the normal vector distribution differs from normal 
maps to normal maps, it is very difficult to define a unique 
non-linear quantization steps. Therefore, we define several 
encoding modes and the encoder selects the best one by an 
exhaustive search. This would require a lot of encoding time 
(i.e., n times more encoding time for n types of encoding 
modes as compared to 3Dc). However, since encoding is 
carried out only once at the vendor side, the encoding com-
plexity does not matter very much. Typically, the encoding 
time of the 3Dc algorithm is tens of milliseconds. Therefore, 
the encoding time for the proposed method is several sec-
onds. In addition, we need to store the mode ID, but the ad-
ditional bits for this information is only several bits and 
fixed rate, which is not a problem. 

Possible variations in the encoding type are as follows: 
- threshold value of |x|max and |y|max to apply our non-linear 

quantization 
- how quantization steps are distorted. 

Such information is common to all the sub-blocks in a nor-
mal map, thus saving the bits for encode mode memorization. 

The decoding in our scheme is very close to that of 3Dc. 
The additional cost for our scheme is the detection of the 
encoding mode and simple arithmetic operations to decode 
the non-linearly quantized values. As a result, our algorithm 
is compatible with random access and parallel processing on 
GPUs. 
 
 
 
 

 
Fig. 1. Sample of normal maps: (a) rocky texture, (b) tile 
texture. 
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3. EXPERIMENTAL RESULTS 
 
The experiments were carried out using the normal maps in 
“Bump Texture Library” provided by Computer Graphics 
Systems Development Corporation [15]. About 300 normal 
maps were randomly selected for the experiments. The size 
of the normal maps were all 512x512. Two examples of the 
normal maps are shown in Fig. 1. 

In order to demonstrate the effects of our non-linear 
quantization, the other parts in the encoding and decoding 
process were exactly the same as 3Dc [6]. The threshold 
value has 10 variations: {70/255, 75/255, 80/255, 85/255, 
90/255, 95/255, 100/255, 105/255, 110/255, 115/255, 
120/255}. The quantization mode is selected from one of the 
10 kinds of steps listed below: 

1. min, min+step, min+stepx2, min+stepx3, max-
stepx3, max stepx2, max-step, max 

2. min, min+stepx0.7, min+ stepx1.6, min+ stepx2.6, 
max- stepx2.6, max- stepx1.6, max- stepx0.7, max 

3. min, min+ stepx0.7, min+ stepx1.6, min+ stepx2.7, 
max- stepx2.7, max- stepx1.6, max- stepx0.7, max 

4. min, min+ stepx0.7, min+ stepx1.6, min+ stepx2.8; 
max- stepx2.8, max- stepx1.6, max- stepx0.7, max 

5. min, min+ stepx0.7, min+ stepx1.7, min+ stepx2.7, 
max- stepx2.7, max- stepx1.7, max- stepx0.7, max 

6. min, min+ stepx0.7, min+ stepx1.7, min+ stepx2.8, 
max- stepx2.8, max- stepx1.7, max- stepx0.7, max 

7. min, min+ stepx0.7, min+ stepx1.7, min+ stepx2.9, 
max- stepx2.9, max- stepx1.7, max- stepx0.7, max 

8. min, min+ stepx0.7, min+ stepx1.8, min+ stepx2.8, 
max- stepx2.8, max- stepx1.8, max- stepx0.7, max 

9. min, min+ stepx0.7, min+ stepx1.8, min+ stepx2.9, 
max- stepx2.9, max- stepx1.8, max- stepx0.7, max 

10. min, min+ stepx0.7, min+ stepx1.8, min+ stepx3.0, 
max- stepx3.0, max- stepx1.8, max- stepx0.7, max 

where min and max represent the minimum and maximum 
values in each sub-block. And, step is defined as (max-
min)/7. The mode #1 is the linear quantization employed in 
3Dc, which is used for comparison. Therefore, the additional 
bit for a normal map is only 7 bits, which is almost negligi-
ble. These parameters were chosen by empirical study. 

Fig. 2 shows how much PSNR is improved as compared 
to the original 3Dc at the same bit rates (8 bpp). Fig. 2(a) 
demonstrates the distribution of PSNR improvement. It is 
observed that our algorithm is valid regardless of the origi-
nal PSNR obtained from the original 3Dc. Fig. 2(b) is a his-
togram of Fig. 2(a), showing how much PSNR is improved. 
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Fig. 2. PSNR improvement from original 3Dc: (a) distri-
bution for 300 normal maps, (b) histogram of PSNR en-
hancement. 
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Fig. 3. Frequency histograms; (a) threshold, (b) mode for 
non-linear quantization. 
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The PSNR is enhanced 0.29 dB on average. The PSNR im-
provement using e3Dc [7] was 0.22 dB for our data and that 
of the tight frame approach [8] was 0.02 dB. In [7][8], it was 
reported that e3Dc and the tight frame approach was  1.87 ~ 
2.63 dB better than 3Dc. However, these algorithms work 
well in some limited cases, for instance, for artificial objects 
(buildings, etc.) or smoothly changing surfaces (car hoods, 
etc.). These algorithms are not suitable for random textures 
such as those for natural scenes (rocks, asphalt roads, etc.). 
On the other hand, our algorithm is preferred for more ran-
dom and bumpy textures. Therefore, we can use both of the 
algorithms complimentary. Our algorithm can be easily im-
plemented into [7][8]. 

Since the normal maps can be represented as RGB bit 
maps, we tend to compare the compression performance in 
terms of PSNR. However, normal maps are maps of normal 
vectors in which only the directions of the vectors are mean-
ingful. Therefore, in [8], performance comparison by angle 
accuracy was also proposed. In this point of view, our algo-
rithm yields the similar performance to the 3Dc algorithm. 
In both cases, the mean angle error was 3.1 degree. 

Fig. 3 demonstrates the frequency histograms for the 
threshold values and the non-linear quantization modes. 
From Fig. 3(b), we can point out that our non-linear quanti-
zation is better than the linear quantization for the most 
cases (99%). The quantization mode #1 was chosen only 
three times. It is estimated that more parameter optimization 
is possible for both the thresholds and the quantization 
modes. 
 

4. CONCLUSIONS 
 
In this paper, we have presented an error model for the com-
pressed normal maps when the z components are eliminated 
by taking advantage of the normalizing condition. It has 
been demonstrated that the error in the z values depends not 
only on the errors in the x and y values but also the original z 
values themselves. In addition, we have proposed a non-
linear quantization for the 3Dc-based compression algo-
rithms based on the error model. As a result, we have im-
proved the PSNR by 0.29 dB as compared to the original 
3Dc algorithm and by 0.07dB as compared to the more ad-
vanced algorithm (e3Dc). In addition, the non-linear quanti-
zation proposed in this paper is suited for the random access 
and the parallel computing in GPUs. In our future work, the 
dynamic thresholding and quantization mode selection in 
each sub-block is considered. 
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