
ERROR ANALYSIS OF 3DC-BASED NORMAL MAP COMPRESSION
AND ITS APPLICATION TO OPTIMIZED QUANTIZATION

Toshihiko Yamasaki and Kiyoharu Aizawa

Department of Information and Communication Engineering, The University of Tokyo

ABSTRACT

Normal mapping is one of the most essential technologies
for realistic three-dimensional computer graphics. In con-
ventional normal map compression such as 3Dc, only the x
and y components are encoded and the z components are
restored based on the normalizing condition. In this paper,
we present an intuitively comprehensive error analysis for
this approach. As a result, we reveal in what condition com-
pression error becomes larger. We also present a non-linear
quantization algorithm based on the formula for better com-
pression performance than the conventional approaches.
Experimental results using 300 normal map demonstrate that
the PSNR is improved by 0.29 dB on average. Our algo-
rithm is compatible with random access and highly-parallel
processing on GPU.

Index Terms— Normal map, compression, error analy-
sis, non-linear quantization, 3Dc

1. INTRODUCTION
Normal mapping [1], which is extended from bump mapping
[2], is an essential technology in realistic three-dimensional
(3D) computer graphics (CG). Normal mapping is a tech-
nology to express bumpy texture using simple polygons and
extra texture data called normal maps. Normal maps are the
maps of 3D normal vectors of the objects’ surface stored in
2D arrays. Normal maps are often expressed as 24-bit full
color bitmaps based on the following equation (thus, x, y,
and z values are discrete and such data format are called
8x8x8 normal maps):

() ()2, , , , 1
255

x y z R G B= − (1)

where (x, y, z) and (R, G, B) represent the element values of
a normal map and their corresponding pixel values, respec-
tively. The [-1, 1] range of normal vectors is mapped to in-
teger values of [0, 255] based on (1). Also, the length of the
normal vectors is normalized to one:

2 2 2 1x y z+ + = . (2)
Here, the z component is always equal to or greater than
zero because normal vectors point to the direction of the
outer side of the surface:

1 1, 1 1, 0 1x y z− ≤ ≤ + − ≤ ≤ + ≤ ≤ + (3)

From (2) and (3), the z components can be eliminated since
they can be restored by the simple calculation:

2 21z x y= − − . (4)
Only by taking the inner product between the illumination
vectors and the normal vectors, we can give more reality to
the shading without using a lot of polygons. In addition, the
shading can be calculated efficiently even if the light source
position or the view point changes.

Since the bus bandwidth between CPU and GPU is
quite limited, the data transfer of the high quality and large-
seized normal maps is becoming a significant issue. Al-
though normal maps can be expressed as regular bitmaps as
discussed above, conventional 2D image compression algo-
rithms such as JPEG or JPEG2000 are not applicable. This
is due to the requirements peculiar to GPU-based processing
such as random accessibility (i.e., fixed-rate compression)
and the feasibility for the massively parallel processing. In
this regard, there has been a number of dedicated normal
map compression algorithms [3]-[12] developed so far
though they are not always very efficient from the view point
of compression ratio.

Ref. [3] was the first contribution to the normal map
compression in which how much accuracy (resolution) is
needed for human eyes instead of using 32-bit floating point
accuracy was discussed. In [5], general-purpose texture
compression algorithms using VQ was applied. ATI devel-
oped a dedicated algorithm called 3Dc [6] based on a block
truncation algorithm [13]. This algorithm is now a de-facto
standard supported by major GPU vendors. Later on, the
3Dc algorithm was improved by dynamically changing the
bit allocation depending on the data distribution in the sub-
blocks [7] and by the near-optimal principal component
analysis [8]. Another modification of the 3Dc algorithm can
be found in [9], in which all-zero sub-blocks are treaded in a
different way for more efficient compression. A variable bit
rate encoding approach [10] and hybrid method employing
vector quantization (VQ) and Huffman encoding [11][12]
were also presented so far. In many cases, the components
are neglected based on (4). However, there is little work to
investigate how the error in the z components is affected by
the lossy compression of the x and y components.

In this point of view, the authors proposed an error
model for the normal map compression algorithms [14].
However, the equation was difficult to understand intuitively.

11771-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

In addition, how to apply the error model to better compres-
sion was not discussed in [14]. The authors confirmed that
judging whether to include the z components or not as pro-
posed in [14] does not work properly with the 3Dc-based
algorithms.

Therefore, the purpose of this paper is to establish a
more comprehensible error analysis model of the z compo-
nent elimination and apply it to the better compression. In
our analogy, we demonstrate that the error in the z compo-
nents are the functions of not only the errors in the x and y
values but the z value itself. Besides, we demonstrate a non-
linear quantization algorithm based on our model, in which
PSNR is enhanced by 0.29 dB on average as compared to
3Dc. This is also better than the e3Dc algorithm [7]
(0.22 dB on average for our data). The algorithm can also be
embedded into the other 3Dc-based approaches [7][8] for
more efficient compression. In addition, the proposed non-
linear quantization is compatible with random access and
parallel computing on GPU.

2. ERROR MODEL AND COMPRESSION

Let us begin from [14] due to the limited length of the paper.
Assume that the original values of the i-th x and y compo-
nents values are xi and yi and the decoded values are xi’ and
yi’. The restored z component (zi’) obtained from (4), would
become

()
() ()

() ()

2 2

2 2 2 2 2 2

2 2 2 2
2 2

2 2

' 1 ' '

1 ' '

' '
1 1

1

i i i

i i i i i i

i i i i
i i

i i

z x y

x y x y x y

x y x y
x y

x y

= − +

= − + − + − −

+ − −
= − + −

− +

()
()()

2 2 2 2

1
1 2 2 2

' '1 ,
2

1

n

i i i i
i

nn
i i

x y x y
z C n

x y

∞

−=

+ − −
= + −

− +
 (5)

where C(1/2, n) represents the generalized binomial coeffi-
cients.

As can be observed from (5), zi’ is affected not only by
the accuracy of the lossy compression in xi and yi, but also
the original z component (zi). In particular, it is expected that
if the original z value is close to zero (i.e., the texture is
more random and rough), the error would become very large.
Since the normal map technology was originally developed
to express the roughness of the surface, this is a significant
problem.

For instance, in the 3Dc [6], the x and y planes are di-
vided into 4x4 sub-blocks and the maximum and the mini-
mum values are expressed with 8-bit accuracy. Then, the
intermediate values are expressed with 3-bit (eight values)
accuracy by a simple linear quantization. Therefore, the bit
rates become 8 bpp (8x2+3x16 = 64 bits for each sub-block).

Although bit allocation is dynamically changed in some
3Dc-based approaches [7][8], quantization is still linear and
the error characteristics as presented in (5) is not taken into
consideration.

In this paper, we present a non-linear quantization ap-
proach based on the analysis in (5) by allocating more dense
steps when |x| or |y| is close to one (e.g., near-zero region in
the z components). Although our non-linear quantization
would decrease the error in the z components, the errors in
the x and y components would become larger instead. There-
fore, the optimal encoding is in the trade-off between the
error reduction in z and the error increase in x and y.

Since the normal vector distribution differs from normal
maps to normal maps, it is very difficult to define a unique
non-linear quantization steps. Therefore, we define several
encoding modes and the encoder selects the best one by an
exhaustive search. This would require a lot of encoding time
(i.e., n times more encoding time for n types of encoding
modes as compared to 3Dc). However, since encoding is
carried out only once at the vendor side, the encoding com-
plexity does not matter very much. Typically, the encoding
time of the 3Dc algorithm is tens of milliseconds. Therefore,
the encoding time for the proposed method is several sec-
onds. In addition, we need to store the mode ID, but the ad-
ditional bits for this information is only several bits and
fixed rate, which is not a problem.

Possible variations in the encoding type are as follows:
- threshold value of |x|max and |y|max to apply our non-linear

quantization
- how quantization steps are distorted.

Such information is common to all the sub-blocks in a nor-
mal map, thus saving the bits for encode mode memorization.

The decoding in our scheme is very close to that of 3Dc.
The additional cost for our scheme is the detection of the
encoding mode and simple arithmetic operations to decode
the non-linearly quantized values. As a result, our algorithm
is compatible with random access and parallel processing on
GPUs.

Fig. 1. Sample of normal maps: (a) rocky texture, (b) tile
texture.

1178

3. EXPERIMENTAL RESULTS

The experiments were carried out using the normal maps in
“Bump Texture Library” provided by Computer Graphics
Systems Development Corporation [15]. About 300 normal
maps were randomly selected for the experiments. The size
of the normal maps were all 512x512. Two examples of the
normal maps are shown in Fig. 1.

In order to demonstrate the effects of our non-linear
quantization, the other parts in the encoding and decoding
process were exactly the same as 3Dc [6]. The threshold
value has 10 variations: {70/255, 75/255, 80/255, 85/255,
90/255, 95/255, 100/255, 105/255, 110/255, 115/255,
120/255}. The quantization mode is selected from one of the
10 kinds of steps listed below:

1. min, min+step, min+stepx2, min+stepx3, max-
stepx3, max stepx2, max-step, max

2. min, min+stepx0.7, min+ stepx1.6, min+ stepx2.6,
max- stepx2.6, max- stepx1.6, max- stepx0.7, max

3. min, min+ stepx0.7, min+ stepx1.6, min+ stepx2.7,
max- stepx2.7, max- stepx1.6, max- stepx0.7, max

4. min, min+ stepx0.7, min+ stepx1.6, min+ stepx2.8;
max- stepx2.8, max- stepx1.6, max- stepx0.7, max

5. min, min+ stepx0.7, min+ stepx1.7, min+ stepx2.7,
max- stepx2.7, max- stepx1.7, max- stepx0.7, max

6. min, min+ stepx0.7, min+ stepx1.7, min+ stepx2.8,
max- stepx2.8, max- stepx1.7, max- stepx0.7, max

7. min, min+ stepx0.7, min+ stepx1.7, min+ stepx2.9,
max- stepx2.9, max- stepx1.7, max- stepx0.7, max

8. min, min+ stepx0.7, min+ stepx1.8, min+ stepx2.8,
max- stepx2.8, max- stepx1.8, max- stepx0.7, max

9. min, min+ stepx0.7, min+ stepx1.8, min+ stepx2.9,
max- stepx2.9, max- stepx1.8, max- stepx0.7, max

10. min, min+ stepx0.7, min+ stepx1.8, min+ stepx3.0,
max- stepx3.0, max- stepx1.8, max- stepx0.7, max

where min and max represent the minimum and maximum
values in each sub-block. And, step is defined as (max-
min)/7. The mode #1 is the linear quantization employed in
3Dc, which is used for comparison. Therefore, the additional
bit for a normal map is only 7 bits, which is almost negligi-
ble. These parameters were chosen by empirical study.

Fig. 2 shows how much PSNR is improved as compared
to the original 3Dc at the same bit rates (8 bpp). Fig. 2(a)
demonstrates the distribution of PSNR improvement. It is
observed that our algorithm is valid regardless of the origi-
nal PSNR obtained from the original 3Dc. Fig. 2(b) is a his-
togram of Fig. 2(a), showing how much PSNR is improved.

2525 30

30

35

35

40

40

45

45

50

50

PSNR of compressed normal maps using 3Dc (dB)

PS
N

R
 o

f c
om

pr
es

se
d

no
rm

al
 m

ap
s

us
in

g
ou

r a
lg

or
ith

m
 (d

B
)

(a)

0
0

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.2

0.1

0.2

0.3

0.4

0.5

PSNR gain from 3Dc (dB)

Fr
eq

ue
nc

y
(n

or
m

al
iz

ed
)

(b)
Fig. 2. PSNR improvement from original 3Dc: (a) distri-
bution for 300 normal maps, (b) histogram of PSNR en-
hancement.

70 75 80 85 90 95 105 110100 115 120
0

0.1

0.2

0.3

0.4

0.5

Threshold

Fr
eq

ue
nc

y
(n

or
m

al
iz

ed
)

(a)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Selected mode for non-linear quantization

Fr
eq

ue
nc

y
(n

or
m

al
iz

ed
)

(b)
Fig. 3. Frequency histograms; (a) threshold, (b) mode for
non-linear quantization.

1179

The PSNR is enhanced 0.29 dB on average. The PSNR im-
provement using e3Dc [7] was 0.22 dB for our data and that
of the tight frame approach [8] was 0.02 dB. In [7][8], it was
reported that e3Dc and the tight frame approach was 1.87 ~
2.63 dB better than 3Dc. However, these algorithms work
well in some limited cases, for instance, for artificial objects
(buildings, etc.) or smoothly changing surfaces (car hoods,
etc.). These algorithms are not suitable for random textures
such as those for natural scenes (rocks, asphalt roads, etc.).
On the other hand, our algorithm is preferred for more ran-
dom and bumpy textures. Therefore, we can use both of the
algorithms complimentary. Our algorithm can be easily im-
plemented into [7][8].

Since the normal maps can be represented as RGB bit
maps, we tend to compare the compression performance in
terms of PSNR. However, normal maps are maps of normal
vectors in which only the directions of the vectors are mean-
ingful. Therefore, in [8], performance comparison by angle
accuracy was also proposed. In this point of view, our algo-
rithm yields the similar performance to the 3Dc algorithm.
In both cases, the mean angle error was 3.1 degree.

Fig. 3 demonstrates the frequency histograms for the
threshold values and the non-linear quantization modes.
From Fig. 3(b), we can point out that our non-linear quanti-
zation is better than the linear quantization for the most
cases (99%). The quantization mode #1 was chosen only
three times. It is estimated that more parameter optimization
is possible for both the thresholds and the quantization
modes.

4. CONCLUSIONS

In this paper, we have presented an error model for the com-
pressed normal maps when the z components are eliminated
by taking advantage of the normalizing condition. It has
been demonstrated that the error in the z values depends not
only on the errors in the x and y values but also the original z
values themselves. In addition, we have proposed a non-
linear quantization for the 3Dc-based compression algo-
rithms based on the error model. As a result, we have im-
proved the PSNR by 0.29 dB as compared to the original
3Dc algorithm and by 0.07dB as compared to the more ad-
vanced algorithm (e3Dc). In addition, the non-linear quanti-
zation proposed in this paper is suited for the random access
and the parallel computing in GPUs. In our future work, the
dynamic thresholding and quantization mode selection in
each sub-block is considered.

5. ACKNOWLEDGEMENTS

This work is supported by the Ministry of Education, Cul-
ture, Sports, Science and Technology of Japan under the
“Development of fundamental software technologies for
digital archives” project.

6. REFERENCES

[1] M. J. Kilgard, “A practical and robust bump-mapping tech-

nique for today’s GPUs,” Game Developers Conference, Ad-
vanced OpenGL Game Development, 2000.

[2] J.F. Blinn, “Simulation of wrinkled surfaces, Proc. the 5th
annual conference on Computer graphics and interactive tech-
niques,” Vol. 12, No. 3, pp.286-292, 1978.

[3] M. Deering,. “Geometry compression,” Proc.
SIGGRAPH1995, pp. 13–20, 1995.

[4] S. Fenney and M. Butler, “Method and apparatus for com-
pressed 3d unit vector storage and retrieval,” Patent WO
2004/008394 A1, 2004.

[5] S. Green, “Bump Map Compression Whitepaper,”
http://download.nvidia.com/developer/Papers/2004/Bump_M
ap_Compression/Bump_Map_Compression.pdf, Oct. 2004.

[6] “ATI RADEON X800 3Dc white paper,”
www.ati.com/products/radeonx800/3DcWhitePaper.pdf.

[7] J. Munkberg, T.A. Möller, and J. Ström, “High-quality nor-
mal map compression”, Proc. Graphics Hardware Workshop,
pp. 95-101, 2006.

[8] J. Munkberg, O. Olsson, J. Ström, and T.A. Möller, “Tight
frame normal map compression”, Proc. 22nd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware, pp. 37-40, 2007.

[9] B. Yang and Z. Pan, “A hybrid adaptive normal map texture
compression algorithm,” Proc. 16th International Conf. Artifi-
cial Reality and Telexistence (ICAT06), pp. 349-354, 2006.

[10] A. Wong and W. Bishop, “Adaptive normal map compression
for 3d video games,” Proc Future Play, 2006.

[11] T. Yamasaki and K. Aizawa, “Fast and efficient normal map
compression based on vector quantization,” Proc. IEEE
ICASSP2006, pp. II-9-II-12, 2006.

[12] T. Yamasaki and K. Aizawa, “Highly efficient VQ-based
normal map compression using quality estimation model,”
Proc. IEEE ICASSP2007, pp. I-1041-I-1044, 2007.

[13] E.J. Delp and O.R. Mitchell, “Image compression using block
truncation coding,” IEEE Trans. Communications, vol. com-
27, no. 9, Sep. 1979.

[14] T. Yamasaki, K. Hayase, and K. Aizawa, “Mathematical error
analysis of normal map compression based on unity condi-
tion,” Proc. IEEE ICIP2005, pp. II-253-II-257, 2005.

[15] “Bump texture library,” Computer Graphics Systems Devel-
opment Corporation, http://cgsd.com/.

1180

