
VIDEO CODING USING COMPRESSED REFERENCE FRAMES

Madhukar Budagavi and Minhua Zhou

DSPS R&D Center, Texas Instruments Inc., Dallas, TX-75243, USA

ABSTRACT

Handheld battery-operated consumer electronics video
devices such as camera phones, digital still cameras, digital
camcorders, and personal media players have limited system
memory bandwidth available because of cost and power
consumption constraints. Video coding consumes a
significant amount of this limited system memory bandwidth
especially at high-definition (HD) resolution. Techniques
that reduce memory bandwidth in video coding are crucial
for implementing video coding at HD resolutions in portable
video devices. Memory bandwidth reduction is also
desirable from a power consumption point of view since
memory accesses consume a significant amount of power. In
this paper we present our technique - in-loop compression of
reference frames - for reducing memory bandwidth in video
coding.

Index Terms— Video coding, H.264/AVC, memory
bandwidth reduction, low power consumption, next
generation video coding standards.

1. INTRODUCTION

Handheld battery-operated consumer electronics devices
such as camera phones, digital still cameras, digital
camcorders, and personal media players have become very
popular in recent years. Video codecs are extensively used
in these devices for video capture and/or playback. The
annual shipment of such devices already exceeds a hundred
million units and is growing, which makes mobile battery-
operated video device requirements of low-power, low-cost,
and high-quality at low complexity very important to focus
on in video coding research and development [1] [2]. The
video coding methods developed for future video coding
standards need to address the following to satisfy the
requirements for video coding on mobile battery-operated
video devices: memory access bandwidth reduction,
enhanced parallelism support, computation cycles reduction,
and memory size reduction [2]. In this paper our focus is on
developing video coding techniques for reducing memory
access bandwidth and also memory size.

Video
codec
chip

SDRAM
(Mobile-DDR
/ DDR2)

Figure 1: In portable video devices reference frames used by
video codec are stored in external SDRAM.

In portable video devices, the video codec chip is
connected to external SDRAM chip (which is usually either
Mobile-DDR or DDR2) where video reference frames are
stored. The video reference frames need to be accessed for
both motion estimation and motion compensation. Portable
video devices are expected to support high-definition
resolution (HD) video coding in the near future. In fact, HD
resolution camcorders have already started appearing in the
market [3]. At HD resolution, memory bandwidth becomes
one of the key limiting factors since the total available
system memory bandwidth is limited in portable video
devices because of cost and power reasons. Limited memory
bandwidth impacts video quality because of constraints on
amount of data that can be loaded for motion vector search
in encoder. The power consumed for memory accesses also
goes up at HD resolution because of the significant amount
of data that needs to be accessed. Hence techniques for
reducing memory bandwidth are critical at HD resolution.

In this paper, we present a technique for reducing
memory bandwidth in video coding. Our technique consists
of in-loop compression of reference frames. Since reference
frame compression is carried out in the core video coding
loop, there is no mismatch between the encoder and decoder.
A byproduct of our technique is that the amount of memory
required to store the reference frames also goes down
because of reference frame compression. Note that reduced
memory size is desirable in order to reduce the cost of the
system. Our technique serves the dual purpose of reducing
memory bandwidth and memory size.

In the next section, we consider HD video encoding and
compare the power consumed for SDRAM memory accesses
with power consumed in video codec chip to motivate the
importance of memory access bandwidth reduction. In

11651-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

Section 3, we describe our technique of video coding using
reference frame compression. In Section 4, we present the
rate distortion impact when H.264 is modified to include
reference frame compression. We conclude the paper in
Section 5.

2. SDRAM ACCESS POWER CONSUMPTION IN
VIDEO ENCODING

SDRAM memory accesses typically consume around 20-
30 mW/Gbps of data transfer [4] or more. Power consumed
in SDRAM is given by [5]:

Total Power = Core Power + I/O Power
= (IDD4 x VDD)+(C x f/2 x VDDQ2 x
number of I/Os/2)

For example, the Samsung K4X51323PC Mobile-DDR
SDRAM [6] has the following specifications at 133 MHz:

f = 133*(106); % 133 MHz
Vdd = 1.8;Vddq = 1.8; % 1.8 Volts
numIO = 32; % Number of I/O pins
Idd4r = 125*(10-3); % Read current – 125 mA
Idd4w = 100*(10-3); % Write current – 100 mA

Assuming a 4 pF capacitive load (C = 4*10-12 in the above
equations), the Samsung K4X51323PC consumes roughly an
estimated 29.6 mW/Gbps for reads and an estimated 24.4
mW/Gbps for writes. Another commonly used SDRAM in
portable video devices is the DDR2 SDRAM. The power
consumption in DDR2 is higher than that in Mobile-DDR
SDRAM (but DDR2 is cheaper than Mobile-DDR). For
example, the Samsung K4T51163QE DDR2 SDRAM [7] at
200 MHz consumes roughly an estimated 41.2 mW/Gbps for
reads and an estimated 31.4 mW/Gbps for writes.

Let us consider the example of HD video encoding to
illustrate the total amount of power consumed by SDRAM
memory accesses. The power consumed by memory
accesses is the sum of core power of the SDRAM chip, the
IO power of the SDRAM chip and the IO power of the video
codec chip. The estimated SDRAM memory access
bandwidth for motion estimation and motion compensation
in a 720p30 H.264 encoder is around 380 MB/s assuming
number of reference frames = 2, motion vector search range
of (64 Horizontal, 32 Vertical) and a sliding motion vector
search window. Note that the sliding motion vector search
window algorithm maximizes the caching of motion vector
search data between adjacent macroblocks. The memory
access bandwidth will be much higher if caching is not used.
The estimated power consumed for memory transfers in
motion estimation and motion compensation in a 720p30
H.264 encoder is 98.34 mW when Mobile-DDR is used and
131.9 mW when DDR2 is used.

To illustrate the amount of power consumed in a video
codec chip, consider the HDTV 720p encoder chip
presented in [8]. The authors quote a power consumption
number of 785 mW for their chip which is fabricated using
180nm technology. If the same chip were to be
manufactured with a newer semiconductor technology such
as 65nm, the power consumption of the chip presented in [8]
can be expected to be roughly 170 mW if no other power
optimization is done. This is because power consumption
typically goes down by 40% with each shrink of transistor
size. Moving from 180nm to today’s 65nm involves three
shrinks of transistor size (180nm -> 130nm -> 90 nm ->
65nm) resulting in a 78% reduction in power consumption in
going from 180nm to 65 nm.

When we compare the power consumed in a video codec
chip with that consumed for SDRAM memory accesses
based on the rough calculation presented in this section, we
can see that estimated power consumed by SDRAM memory
access in motion estimation and motion compensation in a
video encoder is significant when compared to video codec
core power. Hence, techniques that reduce memory access
bandwidth are very important in reducing power in a total
video encoder solution that consists of the codec core +
SDRAM memory. Note that the main goal of this section
was to highlight the importance of reducing memory transfer
bandwidth. The calculations shown in this section are
approximate and are not measured numbers.

3. VIDEO CODING USING COMPRESSED
REFERENCE FRAMES

Motion
Estimation

motion
vector

Motion
Compensation

Prev. frame
buffers

Quantization

VLC encoding

DCT

Inverse
QuantizationIDCT

Input video

Compressed
video stream

Mode

0

Control
(Inter/Intra)

CUC

UC

– UC – Compression
– UC – Decompression

C

UC

Figure 2: Video coding using compressed frame buffers.

Figure 2 shows the key idea behind our technique for
reducing memory access bandwidth and reference frame
buffer memory size. We compress the reference frames
before storing them in memory thereby saving write memory

1166

bandwidth and we decompress them after reading them from
memory thereby saving read memory bandwidth. We carry
out reference frame compression in the core video coding
loop so that quantization errors encountered during
reference frame compression show up in the residual after
motion compensation and get compensated for in both the
encoder and decoder. Including reference frame
compression in the core video coding loop is the key idea of
our technique. It prevents the drift between the encoder and
the decoder leading to a perfect match between the encoder
and the decoder.

Several algorithms can be used to compress reference
frames. The desirable characteristics for the reference frame
compressor are:

1. Simple encoding and decoding algorithms – The
encoding and decoding must not be complex as the
power incurred in encoding and decoding should
not offset the power savings because of the
resulting memory bandwidth compression.

2. Fixed length compression for random access of
memory blocks – Random access is desirable in
both the encoder and the decoder to access any
block of video data in the frame for motion
estimation and motion compensation.

The particular algorithm that we use for compressing
reference frames in this paper is a fixed-length compression
algorithm based on block scalar quantization [9]. Note that
other fixed-length compression algorithms such as vector
quantization can be used too and is a topic for future
research. Figure 3 shows the pseudo-code of the algorithm
that we use (henceforth termed as min-max-scalar-
quantization (MMSQ) scheme).

MMSQ encode

compress_block(inblk[4][4]) {
// calculate min and max value of pixels in inblk
min = minimum(inblk);
max = maximum(inblk);

// Store min and max values, N bits each
putbits(min,N);
putbits(max,N);

// Scalar quantize all pixels to L bits
Q = (mmax-mmin)/(2L-1);
for(i = 0 to 3, j = 0 to 3) {

dq = floor((inblk[i][j]-mmin)/Q+0.5);
putbits(dq, L);

}
}

Figure 3: Min-max-scalar-quantization scheme (MMSQ).

The input (inblk) to the compressor is a block of 4x4 pixels,
which in general can be from N-bit video signal. In the first

step of the algorithm, the minimum and maximum pixel
values in the block are calculated and stored. Then all the
pixels in the 4x4 block are uniformly quantized to L bits
between the calculated minimum and maximum pixel values
and stored. The total number of input bits into the algorithm
is 16*N. The total number of compressed bits is: 2*N+16*L.

The complexity of the MMSQ scheme is very low. The
scalar quantization operation can be simplified as:

dq=floor(inblk[i][j]-mmin)*(2L-1)/(mmax-mmin)+0.5);

We implement the division operation above as a
multiplication by inverse. We pre-calculate the inverses and
store it in a lookup table. For 8-bit video signal, the range of
(mmax-mmin) is limited to [0 255], hence a table of 256
elements is sufficient.

4. RESULTS

We incorporated the MMSQ scheme into JVT JM 11.0
software to evaluate the rate-distortion performance of using
compressed reference frames in H.264. The encoding
options used were: IPPP-coding, rate-distortion enabled,
single reference frame, JM fast full-search ME. The QP
values used to calculate the Bjontegaard

�
Bitrate and

�
PSNR [10] were: 22, 27, 32, 37.

Table 1: Rate-distortion performance of 6bpp MMSQ.

MMSQ 6bpp (L=5)

25%25%-0.0431.03%Average

25%25%-0.051.36%tennis_p704x480.yuv
25%25%-0.0651.61%HARBOUR_704x576.yuv
25%25%-0.010.28%CREW_704x576.yuv
25%25%-0.0230.57%SOCCER_704x576.yuv
25%25%-0.1042.14%mobile_p704x480.yuv
25%25%-0.041.05%ICE_704x576.yuv
25%25%-0.010.22%football_p704x480.yuv

Reference
memory
size

savings

Estimated
bandwidth
savings

�� ��
PSNR (BD
delta)

�� ��
Bitrate

(BD delta)Sequence

Table 1 lists the Bjontegaard
�
Bitrate increase and

�
PSNR

degradation when 6-bpp MMSQ is used for compressing
reference frames in H.264 when compared to H.264 with
uncompressed reference frames. For representing each 4x4
block, 8-bits are used for minimum pixel value (per block),
8-bits are used for maximum pixel value (per block), pixels
in the block are uniformly quantized to lie in the [minimum,
maximum] range by using 5 bits per pixel (L=5). So overall,
to represent a 4x4 block, we require 6 bits/pixel. This leads
to a 25% savings in memory size used to store reference

1167

frames and an estimated 25% savings in memory transfer
bandwidth over H.264. These significant savings come at the
cost of very little degradation in rate-distortion performance
as can be seen from Table 1 where the average bit-rate
increase is 1.03% or equivalently the average PSNR
degradation is -0.04 dB.

Table 2: Rate-distortion performance of 5bpp MMSQ.

MMSQ 5bpp (L=4)

37.5%37.5%-0.1593.92%Average

37.5%37.5%-0.1815.12%tennis_p704x480.yuv
37.5%37.5%-0.266.63%HARBOUR_704x576.yuv
37.5%37.5%-0.0451.32%CREW_704x576.yuv
37.5%37.5%-0.0862.09%SOCCER_704x576.yuv
37.5%37.5%-0.3687.79%mobile_p704x480.yuv
37.5%37.5%-0.1463.85%ICE_704x576.yuv
37.5%37.5%-0.0270.66%football_p704x480.yuv

Reference
memory
size

savings

Estimated
bandwidth
savings

�� ��
PSNR

(BD delta)

�� ��
Bitrate

(BD delta)Sequence

Table 2 lists the Bjontegaard
�
Bitrate increase and

�
PSNR

degradation when 5-bpp (L=4) MMSQ is used for
compressing reference frames in H.264 when compared to
H.264 with uncompressed reference frames. This leads to a
37.5% savings in memory size used to store reference
frames and an estimated 37.5% savings in memory transfer
bandwidth over H.264. However, these significant savings
come at the cost of degradation in rate-distortion
performance of 3.92% increase in average bit-rate or
equivalently 0.159 dB degradation in PSNR.

5. CONCLUSIONS

Low power consumption and low-cost implementation
are important requirements for video codecs used in
handheld battery-operated consumer electronics devices
such as camera phones, digital still cameras, digital
camcorders, and personal media players. These video
devices will be expected to support high-definition
resolution (HD) video coding in the near future. At HD
resolution, memory bandwidth reduction is essential for
reducing power consumption and cost in portable video
devices. In this paper, we presented a simple technique that
reduces memory bandwidth and also memory size by
compressing reference frames before storing them in
memory. The key idea in our technique is that the reference
frame buffer compression is carried out in the core video
coding loop so that there is no mismatch between the
encoder and decoder. Since the core video coding loop is
modified, including support for our technique requires a

modification to the video coding standard and it is a topic
for future video coding standardization [11].

In simulations, one configuration of our technique using
block scalar quantization achieves a savings of 25% in
reference frame memory size and an estimated savings of
25% in bandwidth at the cost of 1% average increase in bit-
rate or equivalently a decrease in average PSNR of 0.04dB
on 7 D1 resolution video clips when using H.264. Other
configurations of our technique allow for a trade-off in
memory and rate-distortion performance.

REFERENCES

[1] M. Budagavi and M. Zhou, “Next Generation Video Coding
for Mobile Applications: Industry Requirements and
Technologies,” Proc. SPIE Visual Communications and Image
Processing (VCIP), San Jose, Jan. 2007.
[2] Texas Instruments, Nokia, Polycom, Samsung AIT, Tandberg,
“Desired features in future video coding standards,” Document
T05-SG16-C-0215, ITU-T SG 16 contribution, Geneva, June
2007.
[3] Sony HDR-HC5 High Definition Handycam® Camcorder,
www.sony.com.
[4] M. Horowitz, et. al., “Scaling, Power, and the future of
CMOS,” IEEE Intl. Electron Devices Meeting Technical Digest,
2005.
[5] Micron Technical note TN-48-10, “Mobile SDRAM power-
saving features”, www.micron.com.
[6] Samsung K4X51323PC 16Mx32 Mobile-DDR SDRAM,
www.samsung.com.
[7] Samsung K4T51163QE 32Mx16 DDR2 SDRAM,
www.samsung.com.
[8] T-C. Chen, et. al., ”Analysis and architecture design of an
HTDV 720p 30 frames/s H.264/AVC encoder”, IEEE Trans.
Circuits Syst. Video Technol., vol. 16, No. 6, pp. 673-688, June
2006.
[9] K. Sayood, Introduction to Data Compression, Morgan
Kaufmann Series in Multimedia Information and Systems.
[10] G. Bjontegaard, “Calculation of Average PSNR Differences
between RD curves”, ITU-T SG16/Q6, 13th VCEG Meeting,
Austin, Texas, USA, April 2001, Doc. VCEG-M33.
[11] M. Budagavi and M. Zhou, “Video coding using compressed
reference frames”, ITU-T SG16/Q6, 31st VCEG Meeting,
Marrakech, Morocco, January 2007, Doc. VCEG-AE19.

1168

