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ABSTRACT

This paper addresses the problem of simultaneous transmission of
multiple multimedia objects (such as images or video sequences)
over a bandwidth-limited channel. The trivial strategy of partition-
ing in equal parts the available rate among the bitstreams is subop-
timal, when the multimedia objects have different coding complexi-
ties. Exploiting object diversity allows us to allocate the bandwidth
according to some optimality criteria, e.g. minimizing the average
total distortion or minimizing the variance between the distortions of
each object. By describing the rate-distortion characteristics of each
multimedia object in terms of a simple exponential model, we pro-
vide a closed form solution for both the minimum average and the
minimum variance problems. In addition, if we consider the statisti-
cal distribution of the rate-distortion model parameters, we can show
that the minimum variance solution can effectively reduce the qual-
ity fluctuations among the objects, with an overall coding efficiency
loss, w.r.t. the minimum average solution, of only 0.5dB on aver-
age. Some experiments, carried out on different H.264/AVC video
sequences, validate our theoretical results.

Index Terms— Multimedia, coding, statistical multiplexing, rate
control

1. INTRODUCTION

The simultaneous transmission of multiple multimedia data streams
on the same bandwidth-limited channel is a very common problem
in many practical applications, ranging from broadcast television
to video and signal-based surveillance systems. A common task
in these applications is how to allocate the available bandwidth to
each multimedia object in a somehow optimal way. A very simple
solution to the problem is to divide the bandwidth among the mul-
timedia objects so that each bitstream receives an equal portion of
the bit rate. It is straightforward to see that this method is optimal
only in the case that all the multiplexed objects share the same rate-
distortion characteristics. In practice this is rarely the case and more
sophisticated bit allocation techniques have to be considered.

The problem of distributing the available bandwidth across the
objects has been addressed in the literature under the name of statis-
tical multiplexing [1]. The term was first used to indicate the joint
transmission of multiple objects on the same channel: due to the
different coding complexities of each multimedia object, an approx-
imately constant bit rate channel results from multiplexing several
data sequences. The diversity of the multiplexed multimedia objects
can be further used to allocate the bit rate according to some opti-
mality criteria, e.g. to minimize the average object distortion (MI-
NAVE) or the variance of the object distortions (MINVAR) under

some rate constraint. Previous works in the literature have concen-
trated in particular on the first task [2][3], while for the second there
are some specific works [4][5] which deal with the minimization of
quality fluctuations of the objects along time, for the case of video
sequences. In [6], a joint rate control for multiple H.264/AVC video
sequences is proposed, which uses a look-ahead processing window
to allocate the bandwidth resources in order to reduce quality varia-
tions along time. A different technique which yields similar results
is presented in [7]. In both these two works, it is shown that by
reducing the quality variations along time, also the differences in
distortion between multimedia objects are kept small.

In a previous work [8], the authors have shown that it is possible
to achieve the same distortion for the multiplexed objects in an effi-
cient way, for the case of video sequences, using the ρ-domain model
proposed in [9]. In this paper, we extend the solution to the MIN-
VAR problem for multimedia objects whose rate-distortion charac-
teristics can be described by a simple exponential model. The goal
is to achieve constant quality among the different objects meeting a
total rate constraint. Our contribution is novel in the following as-
pects: first, we find a closed form solution to the MINVAR problem,
which holds for those multimedia data whose rate-distortion char-
acteristics can be approximated by the exponential model. Second,
we provide a statistical analysis of the performance of the MINVAR
solution w.r.t. the MINAVE optimization: we show that, even if
the average distortion attained by MINAVE solution is better, the
MINVAR distortion in terms of PSNR is only 0.5 dB worse on av-
erage. Although our method applies to a broad range of multimedia
objects, as a proof of concept we illustrate the results multiplexing
some H.264/AVC video sequences in Section 5. The rest of the paper
is organized as follows: Section 2 describes and justifies the expo-
nential rate-distortion model adopted in the rest of the paper; Section
3 presents the MINAVE and MINVAR closed form solutions; Sec-
tion 4 compares the distortion obtained solving the MINVAR prob-
lem with the minimum average distortion; Section 5 illustrates an
example where objects are video sequences; finally, Section 6 draws
the conclusions.

2. RATE-DISTORTION MODEL

We consider here multimedia objects whose rate R and distortion D
are related by the following exponential model:

D(R) = σ2e
−R

β , (1)

where σ2 is the variance of the object data and β is a parameter re-
lated to the coding complexity of the multimedia data. Given two
objects with the same variance σ2, we need to spend more bits to
encode the object with the higher value of β in order to attain the
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same distortion between the bitstreams. Model (1) is linear in the
R− log D plane, and the parameters β and log σ2 are, respectively,
the inverse of the slope and the intercept at zero. In [10], it is consid-
ered the case of average rate-distortion functions with the same form
of (1); however, all objects are supposed to have the same coding
complexity β and different variances σ2

i , i.e. all the data sequences
are represented by parallel lines in the R − log D plane. In that
case it is shown that the coding gain due to a minimum average op-
timization w.r.t. a constant bit allocation is the ratio between the
arithmetic and geometric mean of the σ2

i . Examples of exponential
D(R) curves can be found when a high-resolution uniform quan-
tizer is used and the distortion metrics is the mean square error. This
means that, at high rates, the rate-distortion characteristics can be
well approximated by (1). As an example, Figure 1(a) shows the
rate-distortion function of a QCIF frame coded using JPEG, JPEG
2000 and H.264/AVC intra: each curve exhibits a linear behavior in
the R− log D plane at medium to high rates. If we consider objects
coded using the same algorithm, as shown in Figure 1(b) for the
case of three CIF video sequences encoded with H.264/AVC, it is
apparent that each D(R) curve is very well approximated by an ex-
ponential function at high rates [11]; therefore, each video sequence
characteristics can be summarized by its parameters βi and σ2

i .

3. OPTIMAL BIT ALLOCATION

In this section, we formulate and solve the MINAVE and MINVAR
rate allocation problems among the multiplexed objects. In the next
section, the average distortions obtained in the two cases are com-
pared.

3.1. Minimum Average distortion – MINAVE

In order to find the optimal rate allocation that minimizes the aver-
age distortion of the N multiplexed objects, we need to solve the
following non-linear constrained optimization problem:

min
R

1

N

N∑
i=1

σ2
i e
−Ri

βi , s.t.

N∑
i=1

Ri ≤ RT , (2)

where RT is the total available rate. Since each term of the summa-
tion is decoupled from the others, we can easily solve this problem
by means of the Lagrange multiplier method. We thus obtain that (2)
is minimized by the rates:

R∗i = βi log(σ2
i /βi) +

βi

β0

(
RT −

N∑
j=1

βj log
(
σ2

j /βj

))
, (3)

where β0 =
∑N

i=1 βi, and the value of the objective function evalu-
ated at R∗i is

DMINAVE =
1

N

N∑
i=1

βi exp

(∑N
j=1 βj log(σ2

j /βj)−RT

β0

)
. (4)

3.2. Minimum Distortion Variance – MINVAR

We now want to minimize the variance of the output distortions, i.e.

min
R

1

N

N∑
i=1

(
Di(Ri)−D

)2
, s.t.

N∑
i=1

Ri ≤ RT , (5)
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Fig. 1. Exponential behavior of D(R) at high rates

where D = 1
N

∑N
j=1 Dj(Rj). This problem is no longer decou-

pled, since each term of the summation, Di, depends on all the oth-
ers distortion terms Dj , j �= i through the average distortion D.
Therefore, we are not able to find a closed form solution using the
Lagrange multiplier method. However, we have shown in a previ-
ous work [8], for the case of video sequences, that problem (5) is
equivalent to the following, for n →∞:

min
R

1

N

N∑
i=1

Dn
i (Ri), s.t.

N∑
i=1

Ri ≤ RT . (6)

This latter problem can be solved in closed form to obtain the opti-
mal (in the minimum-variance sense) rates

R̃i = βi log σ2
i +

βi

β0

(
RT −

N∑
j=1

βj log σ2
j

)
, (7)
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which yields the same distortion DMINVAR for each multimedia object:

DMINVAR = exp

(∑N
i=1 βi · log σ2

i −RT

β0

)
. (8)

4. PERFORMANCE ANALYSIS

In this section we compare the average distortions obtained by the
MINAVE and the MINVAR bit allocation strategies. Since the aver-
age distortion is a convex function (it is a sum of exponentials), there
exists only a global minimum, which is given by (4), i.e. by the MI-
NAVE solution. Therefore, by allocating the rate to each multiplexed
multimedia object according to the MINVAR optimization, we ex-
pect that the average distortion DMINVAR is higher than DMINAVE. To
quantify this quality deterioration, we consider the coding efficiency
loss ratio DMINVAR/DMINAVE. We have already found in our previous
work [8] that this ratio can be rewritten as

DMINVAR

DMINAVE

=
eH(ζ)

N
, (9)

where we define ζ = [ζ1, ζ2, . . . ζN ]T , ζi = βi
β0

and H(ζ) =

−∑N
i=1 ζi log ζi, i.e. H(ζ) is the entropy function of a discrete

memoryless source having the set ζi, i = 1 . . . N as the probability
mass function of its N symbols. From basic information theory, it
follows that:

1

N
≤ DMINVAR

DMINAVE

≤ 1. (10)

In words, equation (11) states that in the best case scenario the two
distortions (MINAVE and MINVAR) are the same; in the worst case,
the average distortion incurred by solving the MINVAR problem is
N times larger than the global optimum, where N is the number of
multiplexed objects.

The lower bound in (11) is not very optimistic, since it says that
the coding efficiency loss due to MINVAR allocation maybe be very
large w.r.t. the MINAVE solution. Fortunately, it was empirically
shown in [8] that this quality loss is much smaller in practice. We
extend here that analysis using a more formal, statistical framework.
We are ultimately interested in finding a bound on the expectation of
the coding efficiency loss. By the Jensen’s inequality, we can write:

E

[
DMINVAR

DMINAVE

]
=

1

N
E
[
eH(ζ)

]
≥ 1

N
eE[H(ζ)]. (11)

In order to find E[H(ζ)], we need to define an appropriate statistical
model describing the distribution of βi. Since the parameters βi are
all positive, their distribution can be well approximated by a gamma
distribution:

Gamma (βi; a, b) = βa−1
i

bae−bβi

Γ(a)
, (12)

where a is the shape parameter and b is the inverse of the scale pa-
rameter, whereas Γ(·) denotes the gamma function. Some experi-
ments with video sequences have confirmed that the fitting with the
gamma distribution approximates very well the histograms of βi. It
can be shown [12] that, if βi is gamma distributed, then ζi = βi

β0
follows a multivariate Dirichlet distribution:

p(ζ) = Dir(ζ; a1, a2, . . . , aN ) =
1

B(a)

N∏
i=1

ζai−1
i (13)
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Fig. 2. Coding efficiency loss for different values of a. Thick lines
are the lower bounds of (11); thin lines are the result of a Montecarlo
simulation, obtained by sampling the Dirichlet distribution.

where ai > 0, and the normalizing constant is the multinomial beta
function:

B(a) = B(a1, a2, . . . , aN ) =

∏N
i=1 Γ(ai)

Γ(
∑N

i=1 ai)
(14)

We notice that the Dirichlet distribution is defined over the N -dimen-
sional simplex SN given by the constraints ζi ≥ 0,

∑N
i=1 ζi = 1.

Given the distribution of ζ , we can now compute the expectation of
the entropy H(ζ) by solving the following integral over the simplex
surface:

E[H(ζ)] =

∫
SN

H(ζ)p(ζ)dsN . (15)

By changing the coordinates to ηi =
√

ζi, after some laborious cal-
culations one obtains:

E[H(ζ)] = ψ(a0 + 1)− 1

a0

S∑
i=1

aiψ(ai + 1), (16)

where a0 =
∑S

i=1 ai, and ψ is the digamma function ψ(t) =
d
dt

log Γ(t).
By substituting (16) into (11), we can obtain the expected cod-

ing efficiency loss we incur when we carry out a MINVAR min-
imization in place of a minimum average optimization. To better
illustrate these concepts, we quantify the coding efficiency loss in a
simple case. If we observe a long sequence of multiplexed objects
(e.g. frames of a long video sequence), and we do not make prior
assumptions about the distribution of the individual objects, we can
assume that βi are i.i.d., i.e. βi ∼ Gamma(βi; a, b). When all the ai

are the same (ai = a, ∀i), equation (16) becomes:

E[H(ζ); ai = a] = ψ(Na + 1)− ψ(a + 1). (17)

This corresponds to the expected entropy of a Dirichlet distribution
having its mean value at the barycenter of the simplex. The param-
eter a controls the peakedness of the distribution about the mean:
higher values of a result in sharper peaks about the mean, i.e. the
variance of the distributions decreases as a grows. Figure 2 shows
the coding efficiency loss as the number of multiplexed objects N
increases, for different values of the parameter a. It can be seen that
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Sequences
MINAVE
variance

MINVAR
variance

ΔPSNR

F-H 5.80 0.77 -0.12
F-S 10.48 3.58 -0.29
F-C 27.18 3.09 -0.25
H-S 4.71 1.09 -0.13
H-C 51.49 7.45 -0.08
S-C 68.81 2.59 -0.04

F-H-S 6.44 0.89 -0.15
F-H-C 23.60 3.20 -0.12
H-S-C 27.61 2.19 -0.09
F-S-C 36.22 7.33 -0.05

F-S-C-S 57.50 9.71 -0.02

Table 1. MINAVE vs. MINVAR optimization. The average rate
for each sequence is 1/2 bpp. F = Foreman, H = Hall Monitor, S =
Soccer, C = Coastguard

as the number of multiplexed objects gets larger, the gap between
MINVAR and MINAVE average distortions becomes larger, even if
it can be shown that the curves pictured in the figure are asymptoti-
cally bounded. Some more interesting considerations can be drawn
by looking at the quality loss for different parameters of the Dirichlet
distribution. When the variance of the distribution goes to zero, the
pdf of ζ becomes a Dirac delta centered at ζ = [1/N, . . . 1/N ].
In this case, H(ζ) = log N and, by (9), we have that the cod-
ing efficiency loss is null; this corresponds to the case in which all
the objects have the same coding complexity β. This latter result
is in agreement with information theory, which states that, for bit-
streams that have a D(R) characteristics with the same slope (at
high rates), the optimal rate allocation in a MINAVE sense is the one
that achieves equal distortion for all the multiplexed objects [13].

For common multimedia objects, such as images or video se-
quences, the shape parameter a is typically larger than 3-4. There-
fore, on average, the expected quality loss incurred when achieving
the same distortion between objects is equal to or less than 0.5 dB.

5. EXPERIMENTAL RESULTS WITH H.264/AVC VIDEO
SEQUENCES

As a proof of concept, we have applied the MINAVE and MINVAR
allocation strategies to the problem of multiplexing some H.264/AVC
video sequences on a bandwidth limited channel. We have used in-
put sequences encoded at a fixed QP = 20; from the test sequences,
we have extracted the parameters of the rate-distortion model for
each frame; then, we have used the σ2

i and βi to optimally allocate,
for each frame, the available rate to the different objects, according
to the MINAVE or MINVAR criteria.

Table 1 shows the results obtained multiplexing the three CIF
video sequences Foreman, Hall monitor, and Coastguard; the avail-
able rate RT depends on the number of multiplexed sequences: for
this example, RT = N · 0.5 bpp. The second and third columns of
the table show the average variance, computed for 300 frames, across
the distortions of the video sequences. Differently from what stated
in Section 3.2, the variance of the MINVAR distortions is greater
than zero, due to the non-perfect linearity of the D(R) character-
istics in the R − log D plane, even at high rates. It can be clearly
seen, however, that using the MINVAR optimization the inter-object
variance is noticeably reduced compared to the one obtained through
MINAVE allocation. The last column of the table shows the coding

efficiency loss in terms of the average PSNR for the multiplexed ob-
jects. The largest coding efficiency loss is 0.29 dB.

6. CONCLUSIONS

In this paper we have considered the problem of multiplexing dif-
ferent multimedia objects over a bandwidth-limited channel. We
have considered two kinds of optimal bit allocation strategies: the
minimization of the average object distortion and the minimization
of the variance of inter-object distortions. Adopting an exponential
rate-distortion characteristics, which has been classically used in lit-
erature to model data sequences quantized with a fine granularity,
we have provided a closed solution for both the MINAVE and the
MINVAR problems. We have then investigated how much the MIN-
VAR allocation deteriorates the average object distortion w.r.t. the
optimal MINAVE solution, by providing a statistical analysis of the
expected coding efficiency loss. Using an example with some multi-
plexed video sequences, we have proved that our method effectively
reduces the inter-object distortion variance, with just a negligible
loss in term of the overall object quality.
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