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ABSTRACT

Hybrid Wyner-Ziv coders which employ a combination of Wyner-
Ziv coding and differential pulse code modulation (DPCM) encod-
ing have recently gained popularity for applications such as video
coding. In this paper we analyze the low-rate operational rate distor-
tion performance of Wyner-Ziv coding using uniform scalar quanti-
zation, in the context of such hybrid coders. Motivated by video we
consider the compression of a rst-order Laplace-Markov source,
and derive approximate analytical rate and distortion expressions
which are accurate at low rates. We utilize the derived analytical
expressions to address the problem of determining the optimal quan-
tization interval ratio of the Wyner-Ziv and DPCM scalar quantizers,
for a range of rates.

Index Terms—Wyner-Ziv coding, uniform scalar quantization,
hybrid coding, low-rate coding, differential pulse code modulation,
Laplace-Markov source

1. INTRODUCTION

Consider the compression of a discrete-time stationary source with
memory {Xn} using scalar quantization. A scalar quantizer will be
de ned by a countable set of thresholds T = {ti}i∈Z, a countably
in nite set of reconstruction levels R = {yi}i∈Z, and an integer-
valued quantization function Q(x) = i ∀x ∈ [ti, ti+1]. A uniform
scalar quantizer satis es ti − ti−1 = Δ for a positive, real-valued
constant Δ and for all i. A uniform scalar quantizer with deadzone
satis es ti − ti−1 = Δ for all i except i = 0.

The well-known differential pulse code modulation (DPCM)
technique [1] compresses the source sequence by communicating
the sequence τn � Q(Xn − E[Xn| �Xn−1, . . . , �Xn−h]) to the de-
coder, where X̂k denotes the decoder reconstruction of the source
symbol Xk and E[·] denotes the expectation operator. The de-
coder reconstruction is given by E[Xn|τn, �Xn−1, . . . , �Xn−h]. As-
suming perfect entropy coding and mean-squared error distortion,
the operational rate and distortion for DPCM coding are character-
ized by RDPCM = limN→∞

1
N

�N
n=1 H(τn) where H(·) denotes

the entropy function, and DDPCM = limN→∞
1
N

�N
n=1 E[(Xn−�Xn)2]. DPCM coding with scalar quantization is often used in ap-

plications such as video and speech compression.
Wyner-Ziv (WZ) coding [2] with scalar quantization is an emerg-

ing alternative to DPCM coding for compression of video sources
[3, 4]. The WZ encoder communicates the sequence τWZ

n � CSW

(Q(Xn)) where CSW denotes a Slepian-Wolf (SW) code [5]. The
WZ decoder decodes Q(Xn) by using τWZ

n and the decoder side-
information { �Xn−k}h

k=1 and reconstructs the source symbol as E[

Xn|Q(Xn), �Xn−1, . . . , �Xn−h]. Assuming perfect SW coding, the

operational rate and distortion for WZ coding are characterized by

RWZ = lim
N→∞

1

N

N�
n=1

H(Q(Xn)| �Xn−1, . . . , �Xn−h) (1)

DWZ = lim
N→∞

1

N

N�
n=1

E[(Xn − �Xn)2]. (2)

The use of hybrid WZ-DPCM coding has recently gained signif-
icant popularity in the design of multimedia systems [4, 6]. Figure
1 shows the overview of a hybrid WZ-DPCM compression system.
The source sequence is partitioned into two subsequences, which we
denote the WZ and DPCM subsequences respectively. The DPCM
subsequence is compressed by utilizing independent coding or dif-
ferential coding with respect to previously coded DPCM symbols.
The compression of the WZ subsequence utilizes previously coded
DPCM (and sometimes, WZ) symbols as decoder side-information.
Research interest in hybrid WZ-DPCM coding is motivated by the
graceful trade-off it provides between complexity and compression
ef ciency, and by the robustness it provides against error-propagation
due to SW decoding failures.

In this paper we analyse the operational rate-distortion perfor-
mance of hybrid WZ-DPCM coding using uniform scalar quanti-
zation. To this end, we derive rate and distortion expressions for
compression of the WZ subsequence in hybrid coding. We use the
derived performance for the WZ subsequence and previous analysis
for the DPCM subsequence, to determine the ratio between DPCM
and WZ quantizer intervals which provides optimal operational per-
formance. As our motivation is video coding, we will consider low-
rate coding, and we will be interested in the stationary, rst-order
Laplace-Markov source

Xn = rXn−1 + Zn (3)

where the density of Xn is f(x) = λ
2
e−λ|x|, r is the real-valued

correlation coef cient, and {Zn} is i.i.d., zero-mean, and is inde-
pendent of Xn−1. The density of Zn is given by [7]

fZ(z) = r2δ(z) + (1− r2)
λ

2
e−λ|z| (4)

The organization of this paper is as follows. In Section 2, we de-
rive approximate operational rate and distortion expressions for cod-
ing of the Wyner-Ziv subsequence, which are accurate at low-rates.
In Section 3 we analyze optimal interval ratios between WZ and
DPCM scalar quantizers for the case where the DPCM subsequence
is encoded using independent coding, and for the case where it is
coded using differential prediction. Finally, we draw conclusions in
Section 4.
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Fig. 1. An overview of a hybrid WZ-DPCM compression system.

2. LOW-RATE RATE-DISTORTION ANALYSIS FOR
HYBRIDWZ-DPCM CODING OF LAPLACE-MARKOV

SOURCE

In this section we consider the operational low-rate rate-distortion
analysis of the WZ encoded symbols in the hybrid WZ-DPCM sys-
tem shown in Figure 1. We assume the use of a uniform scalar quan-
tizer with deadzone for WZ coding (as is common in practice), and
the existence of perfect Slepian-Wolf codes. The partition levels
for the considered quantizer are given by {tk = (k − 1)Δ; k ≤
0}k∈Z∪{tk = kΔ; k > 0}k∈Z, where Δ is the quantization inter-
val. Thus each quantizer interval is of length Δ with the exception
of the interval [t0, t1) which is the deadzone from [−Δ, Δ]. We
consider the stationary, rst-order Laplace-Markov source given by
(3).

Motivated by practice, we assume that decoder side-information
for encoding the WZ symbols is derived from previously decoded
DPCM (and possibly WZ) symbols. We model the decoder side-
information for a given source symbol Xk as �Xk = Xk+Wk where
{Wk} is an i.i.d. uniformly distributed quantization noise sequence
which is independent of Xk and has probability density

fW (w) =
1

2N
−N ≤ w ≤ N.

In the case where reconstructed DPCM symbols are used as side-
information for the WZ symbols, N is related to the quantization
interval used for DPCM coding, and the modeling assumption can
be made exact by the use of dithered uniform scalar quantization for
DPCM coding [8].

In order to derive the operational rate-distortion performance of
WZ coding, we rst obtain the conditional density f(xn|�xn−1). To
this end, we note that

f(xn|�xn−1) =

�
f(xn, �xn−1, w)dw

f(�xn−1)

=

�
f(xn|�xn−1, w)f(�xn−1|w)f(w)dw

f(�xn−1)
. (5)

From the source model, it can be seen that
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Fig. 2. Conditional density f(xn|x̂n−1) for λ = 1, r = 0.3, N =
0.3 and x̂n−1 = 1.5.

f(�xn−1|wn−1) =
λ

2
e−λ|�xn−1−wn−1| (6)

f(�xn−1) =
λ

4N

� N

−N

e−λ|�xn−1−y|dy. (7)

From (6), (7) and the fact that f(xn|�xn−1, w) = f(xn|xn−1 =�xn−1−w), the conditional density given by (5) can be evaluated. In
particular, it can be shown that f(xn|�xn−1) has different parameter-
izations for the three cases where (i) �xn−1 > N , (ii) �xn−1 < −N ,
and (iii) −N ≤ �xn−1 ≤ N . Due to space constraints we only
present the conditional density for the case where �xn−1 > N , as an
example. The other cases can be derived similarly. De ne

f0 �
(1− r)λ

8N
eλ(xn−(r+1)�xn−1)

�
eλN(r+1) − e−λN(r+1)

�
f1 �

(1 + r)λ

8N
e−λ(xn+(1−r)�xn−1)

�
eλN(1−r) − e−λN(1−r)

�
and

κ1 �
r

r + 1

�
e−λxn/r − eλ(xn−(1+r)�xn−1−(1+r)N)

�
κ2 �

r

1− r

�
−e−λxn/r + e−λ(xn+(1−r)�xn−1+(r−1)N)

�
.

Then, it can be shown that the conditional density is given by

f(xn|�xn−1) =
4Nf0

e−λ�xn−1 [eλN − e−λN ]
(8)

when xn < r(�xn−1 −N),

f(xn|�xn−1) =
4Nf1

e−λ�xn−1 [eλN − e−λN ]
(9)

when xn > r(�xn−1 + N), and

f(xn|�xn−1) =
λ
�

(1−r2)
2r

(κ1 + κ2) + re−λxn/r
�

e−λ�xn−1 [eλN − e−λN ]
(10)

when r(�xn−1 −N) ≤ xn ≤ r(�xn−1 + N). Figure 2 illustrates the
conditional density function given by (8), (9) and (10). Note that the
density is discontinuous; this occurs due to the impulse component
in (4).

The derived conditional density f(xn|�xn−1) can be used to de-
termine the operational rate and distortion for the WZ symbols. De-
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ne the conditional quantizer symbol probabilities {pk} and mini-
mum mean-squared error reconstruction points {yk} as

pk �

� tk+1

tk

f(xn|�xn−1)dxn

yk �
1

pk

� tk+1

tk

xnf(xn|�xn−1)dxn.

Then the operational rate is given by [5]

RWZ = −
�

R

(
�
k∈Z

pk log pk)f(x̂n−1)dx̂n−1 (11)

where the logarithm is base 2. We consider the case where [r(�xn−1−
N), r(�xn−1 + N)] ⊂ [−Δ, Δ] and N ≤ Δ, for simplicity. For
analytical tractability, we exploit the fact that we are interested in
low-rate analysis and approximate (11) as

RWZ ≈ −
� 1−r

r
Δ

− 1−r
r

Δ

(
�
k∈Z

pk log pk)f(x̂n−1)dx̂n−1 (12)

which follows from the fact that the in uence of quantizer bins with
large indices is negligible at low rates. We further approximate� 1−r

r
Δ

N

(
�
k∈Z

pk log pk)f(x̂n−1)dx̂n−1

≈
� 1−r

r
Δ

N

(
�
k �=0

pk log pk)f(x̂n−1)dx̂n−1

+

1−2r
r�

j=1

[p0 log p0

���
x̂n−1=

(2j+1)Δ
2

]

� (j+1)Δ

jΔ

f(x̂n−1)dx̂n−1

+[p0 log p0

���x̂n−1=Δ
2
]

� Δ

N

f(x̂n−1)dx̂n−1 (13)

and � N

0

(
�
k∈Z

pk log pk)f(x̂n−1)dx̂n−1

≈ [
�
k∈Z

pk log pk

���x̂n−1= N
2

][

� N

0

f(x̂n−1)dx̂n−1] (14)

which follow from the fact that the dead-zone component of the rate
is almost constant over each quantizer bin. The rate given by (12),
(13) and (14) can be analytically computed. The obtained expres-
sion is fairly lengthy, and hence we do not present it here.

The operational distortion is computed as follows. De ne the
conditional distortion as

Dx̂n−1 �
�
k∈Z

� tk+1

tk

f(xn|x̂n−1)(yk − xn)2dxn.

Then the operational distortion is given as

DWZ =

�
R

Dx̂n−1f(x̂n−1)dx̂n−1 (15)

The right-hand side of (15) can be approximated in a manner similar
to that used for the rate to obtain an analytical expression which is
accurate at low rates.

Figure 3 plots the derived approximate operational rate and SNR
(= 10 log10(

σ2

D
)) performance for an example where r = 0.2,

λ = 1 and N = Δ
10

. Also shown is the operational rate-distortion
performance obtained by simulation. As can be seen the derived rate
and distortion expressions are accurate at low rates, and the accuracy
decreases at rates above 0.5 bits/sample due to the approximations
employed in the analysis.
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3. OPTIMAL QUANTIZER INTERVAL RATIO FOR
HYBRIDWZ-DPCM CODING

In this section we will use the analytical rate-distortion expressions
obtained in Section 2 to determine the optimal quantizer interval ra-
tio ρ �

ΔDP CM

ΔWZ
for the hybrid WZ-DPCM coder and the Laplace-

Markov source described by (3). We consider that symbols are al-
ternately encoded using WZ and DPCM coding. For DPCM en-
coding, we consider two special cases, namely independent coding,
and differential coding using the previously encoded symbol as the
predictor. We assume that a mid-tread uniform scalar quantizer and
perfect entropy coding is used for both cases. For Wyner-Ziv en-
coding we assume that the reconstruction of the previously encoded
DPCM symbol serves as decoder side-information. Accordingly, we
assume that the quantization noise density is approximately modeled
as

fW (w) =
1

2N
−N ≤ w ≤ N

with N = ΔDP CM

2
. The optimal quantizer ratio for a given total

rate constraint can be determined by solving the following problem

min
ρ,ΔDP CM

DWZ(λ, r, ρ, ΔDPCM ) + DDPCM (λ, r, ΔDPCM )

s.t. RWZ(λ, r, ρ, ΔDPCM ) + RDPCM (λ, r,ΔDPCM ) ≤ 2R0

The rst case considered is where the DPCM symbols are inde-
pendently coded. The operational rate-distortion performance in this
case serves as an upper-bound for the performance of other hybrid
coders. The operational coding rate and distortion for the DPCM
symbols can be determined by analysing the quantization of the
memoryless Laplace source with density given by the marginal den-
sity of {Xn}, i.e. fX(x) = λ

2
e−λ|x|. De ning θ � e−λΔDPCM , it

follows from [9] that

DDPCM =
1

λ2

�
2−

√
θ

��
1− ln θ

2

�2

+ θ
ln2 θ

(1− θ)2

��
(16)

and

RDPCM = −(1−
√

θ) log(1−
√

θ)− 3
√

θ
log θ

1− θ

+
√

θ

�
1− log θ

2
− log(1− θ)

�
. (17)
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where r = 0.2, and λ = 1.

Equations (12), (15), (16) and (17) de ne the non-linear optimiza-
tion problem to be solved. We use a sequential quadratic program-
ming based optimization method to obtain the optimal values for the
DPCM quantizer interval ΔDPCM , and the quantizer ratio ρ. Fig-
ure 4 shows the optimal quantizer ratios as a function of the total
rate constraint, for r = 0.2, λ = 1 and a range of rates up to 1
bit per sample. As can be seen, the optimal ratio varies between 0.7
and 1.3. The sensitivity of system performance to the quantizer ratio
was studied by xing the total rate at 0.5 bits per sample and varying
ρ. The change in distortion was found to be less than 2% thereby
demonstrating the insensitivity of performance to changes in ρ.

The second case considered is where the DPCM symbols are
coded using the previous reconstructed symbol as the predictor. In
this case, the operational rate-distortion performance can be lower
bound by the rate and distortion for the quantization of the innova-
tion sequence {Zn}with density given by (4). With θ = e−λΔDPCM

it follows from [10] that

DDPCM =
1

λ2

�
2−

√
θ

��
1− ln θ

2

�2

+ θ
ln2 θ

(1− θ)2

��
(18)

and

RDPCM = −(1− (1− r2)
√

θ) log2(1− (1− r2)
√

θ)

+(1− r2)
√

θ[1− log2 θ

2
− log2(1− θ)

−θ log2 θ

1− θ
]− (1− r2)

√
θ log2(1− r2). (19)

Equations (12), (15), (18) and (19) are used to obtain the optimal
values for the DPCM quantizer interval ΔDPCM and the quantizer
ratio ρ. Figure 5 shows the optimal quantizer ratios, for r = 0.2,
λ = 1 and a range of rates. The optimal ratio in this case varies
between 0.74 and 1.3. The sensitivity of system performance to the
quantizer ratio was studied as above by xing the total rate at 0.5
bits per sample and varying ρ. In this case, the change in distortion
was found to be signi cant (>10%). Thus the correct selection of
quantizer ratio is found to be quite important for this coding system.

4. CONCLUSIONS

We have analyzed the operational rate-distortion performance of hy-
brid WZ-DPCM coders using uniform scalar quantizers at low-rates.
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Fig. 5. The optimal ratio between ΔDPCM and ΔWZ for the in-
novation coding case. The gure plots ρ = ΔDP CM

Δ
for the case

where r = 0.2, and λ = 1.

We have speci cally considered the compression of stationary, rst-
order Laplace-Markov sources. For these, we have derived approx-
imate analytical expressions for the rate and distortion of the WZ
encoded subsequence in a hybrid coder. The derived expressions
are accurate at rates below 0.5 bits per sample. We have utilized
the derived expressions for analyzing the optimal quantization inter-
val ratio between the WZ and DPCM scalar quantizers in a hybrid
system.
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