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ABSTRACT

In this work, a high quality halftone image obtained by dot
diffusion is proposed to reduce the deficiency gap with the error
diffusion. Four kinds of filters with various sizes obtained by
Least-Mean-Square (LMS) are also introduced to simulate the
human visual system (HVS). These filters are employed in the
optimization procedures for class matrix of size 8x8. According
to numerous of simulations, an optimized diffused weighting is
determined. Many well-known halftone methods, which include
direct binary search (DBS), error diffusion, ordered dithering,
and previous dot diffusion are also involved for comparisons.
As demonstrated in the experiments, the quality of the proposed
dot diffusion is close to some error diffusion and is even
superior to the well-known Jarvis and Stucki error diffusion or
Mese’s dot diffusion. Moreover, the dot diffusion inherently has
the parallel processing advantage, which provides much higher
executing efficiency than DBS or error diffusion.
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1. INTRODUCTION

Digital halftoning [1]-[2] is a technique for changing grayscale
images into halftone images. These halftone images can
resemble the original images when viewing from a distance by
lowpass filtering in human visual system (HVS). The technique
is used widely in computer printer-outs, printed books,
newspapers and magazines, because these printing processes are
limited to the black-and-white format (with and without ink).
Another major application of digital halftoning is color
quantization with a limited color palette. There are several kinds
of halftoning methods, which include ordered dithering [1], dot
diffusion [3]-[4], error diffusion [5]-[12] and direct binary
search (DBS) [13]. Of these, dot diffusion has compromised
image quality and processing efficiency.

The ordered dithering is a parallel method, and is generally
distinguished into clustered-dot and dispersed-dot halftone
screens. The image quality of ordered dithering is inferior to
DBS, error diffusion, as well as dot diffusion, since the error
induced from the halftoning procedure is retained in each
halftone pixel. Conversely, error diffusion does not have the
above-mentioned problem, because the error is designed to be
compensated by the neighborhood pixels. Hence, the resulting
error-diffused halftone has the pleasant-looking blue noise
property [14]. However, the error diffusion was born of lacking
parallel processing advantage. Hence, the processing efficiency
is much inferior to ordered dithering. For the time being, the
DBS is the most powerful halftoning when it comes to image
quality. However, the time-consuming iteration-based approach
makes it difficult to be realized in commercial printing devices.

Dot diffusion inherently has the parallel processing benefit by
cooperating with the so-called class matrix. Previous studies
related to the dot diffusion have focused on class matrix
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optimization by Knuth [3] and Mese [4]. However, the diffused
weighting of the previous two works are fixed in integer fashion,
which makes the class matrix optimization itself problematic. In
this work two issues: diffused weighting and the size of the
diffused area are determined to create better halftone quality
which is also able to approximate the error diffusion halftone
while maintaining the parallel processing characteristic.

2. OVERVIEW OF DOT DIFFUSION

Suppose the original image of size PxQ is divided into non-
overlapped blocks of size MxN. An important media called
class matrix, which is of the same size as a divided block, is
employed to determine the processing order in a block. The
flow chart of dot diffusion is quite similar to error diffusion as
shown in Fig. 1. Here we define 255 as a white pixel and 0 as a
black pixel. The variable x; ; denotes the current input value and
x';; is the diffused error accumulated from the neighboring
processed pixels. The variable b; j represents binary output at
position (i, j) and v; ; is the modified gray output. The variable
e;,j denotes the difference between the modified gray output v; ;
and binary output b; ;, and the relationships of b; ;, v; j and e; ;
are organized as below.
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where the variable h,, , is the diffused weighting, and the one
appears in Knuth’s and Mese’s methods is shown in Fig. 2. The
variable x denotes the current processing pixel, and the integers
in the eight-connected neighborhood are diffused proportions.
Since the neighbors in vertical and horizontal orientations are
closer to the center, hence the weightings are larger than
diagonal orientations. Note that, the error can only diffuse to
neighbor pixels that are not binarized yet, which associates to
the members in the class matrix with higher value. The variable
w=3X2_2_hyn is the summation of the diffused weights
corresponding to those unprocessed pixels.

As expected by the readers, the processing orders within the
class matrix have great influence to the reconstructed image
quality. Knuth’s optimization approach tries to reduce the
number of baron (pixel with no higher pixel value surrounded)
and near-baron (pixel with only one higher pixel value
surrounded) in the class matrix. The concept is straight forward
since the baron results in non-diffusible quantized error, and the
near-baron only allows quantized error diffuses in one way.
However, the Knuth’s approach does not take the human visual
system (HVS) into consideration. For this, Mese’s method
adopts the HVS in [4] to determine an optimized class matrix.
During his optimization, the single tone 16 is employed to
develop the final class matrix as shown in Table I.

vy; = X+ x'yj, where x'; ;

M
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Although the Mese’s class matrix provides excellent
reconstructed halftones as will be shown in Section 4, we
believe that there are still some rooms left for improving. For
instance, the optimization of the diffused weighting and the
diffused area, these will be carefully manipulated in the next
section. Another problem in the optimization process of Mese
approach solely single tone of value 16 is utilized in the class
matrix training, which causes the reconstructed class matrix
difficult to render image regions with different tones.

3. IMPROVED DOT DIFFUSION USING OPTIMIZED DIFFUSED
WEIGHTING AND CLASS MATRIX

As revealed in the last paragraph of Section 2, two parameters
of dot diffusion play important roles in the class matrix
optimization: diffused weighting and diffused area. In this
following, some filters of different sizes trained by the Least-
Mean-Square (LMS) are taken as diffused weightings with
alternative diffused areas. The LMS-trained filters are further
employed to produce the corresponding optimized -class
matrices. The details will be elaborated in the following sub-
sections. It is an intuition that as the size of class matrix
growing, the benefit of parallel processing decreases as well. In
order to preserve the important parallel processing advantage,
we try to develop an optimized class matrix of size 8x8
throughout this work.

3.1 LMS-trained filters and performance evaluation

The performance evaluation employed in this work is defined as
below. For an image of size PxQ, the quality of a halftone
image is defined as

P x Q x 2552
PSNR = 10logy, e = 3)
i=1 Zj:l[xi,j - Zm,nER Z Wm,nbi+m,j+n]
where x;; is the original grayscale image, b;; is the
corresponding halftone image, wy,, is the LMS-trained
coefficient at position (m,n) and R is the support region of the
LMS-trained filter. The procedures of how to obtain a LMS
filter will be derived in the next section. Since the LMS filter is
used to resemble the HVS, the values inside the filter are taken
as the diffused weightings and the size can be taken as the
diffused area. In the optimization procedure, the support region
R of four different sizes, 3x3, 5x5, 7x7 and 9x9 are utilized for
testing. To measure the quality of halftone image, the size of R
is fixed at 7x7.

The LMS-trained filter w can be obtained by psychophysical
experiments [15]. The other way to derive w can use a training
set of both pairs of grayscale images as Fig. 3 and good halftone
result of them. In this work, error diffusion, ordered dithering
and direct binary search (DBS) are involved to produce the set.
Here we use LMS to produce w as follows,

’?i,j: Z ZWm,anm,jﬂu (4)
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Wg(,rtl) = erfl,n + Auei+m.1'+nbi+m,j+n' (8)
where w; j o, is the optimum LMS coefficient, eiZJ- is the MSE
between x;; and X;;, u is the adjusting parameter used to
control the convergent speed of the LMS optimum procedure,
which is set to be 1075 in our experiments. Some other quality
evaluation methods can be found in [16] and [17]. Note that,
these filters are all with some basic human visual system
characteristics: (1) the diagonal has less sensitivity than the
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vertical and horizontal directions and (2) the center portion has
the highest sensitivity and it decreases while moving away from
the center.

3.2 Class matrix optimization using LMS-trained filter

The LMS-trained filters obtained above are employed for class
matrix optimization. Since the LMS filters have the
characteristics of HVS, it is reasonable to be taken as the
diffused weighting and diffused area. During the class matrix
optimization, each member in the class matrix is successively
swapped with one of the other 63 members and applied to the
eight testing images as shown in Fig. 3. The quality evaluation
approach introduced in Section 3.1 is employed to evaluate the
two average PSNRs (before swapped and after swapped) of the
corresponding dot-diffused halftone images. Only the swapped
result with the highest PSNR will be retained as a new class
matrix, and then conducts the same above-mentioned procedure
until any swapping cannot improve the PSNR anymore. Note
that, the Mese’s approach only adopts single tone of value 16
for class matrix training, which causes the reconstructed class
matrix difficult to perfectly render image regions with different
tones. Conversely, in this work eight different nature images are
involved in training procedure, which makes the reconstructed
class matrix easier adapts to different tones in an image. The
steps of the optimization procedure are organized as below.

Stepl. Given an initial class matrix C (The Mese’s class matrix
is employed).

Step2. Four LMS filters of sizes 3x3, 5x5, 7x7 and 9x9 are
employed as diffused weighting with different diffused
areas in the testing.

Step3. Suppose the members within class matrix are taken as 1-
D sequence. Each member C(i) in the class matrix is
successively swapped with one of the other 63 members
C(j), where i # j..

Step4. Evaluating the average PSNR of the dot-diffused
halftone images using the class matrix derived from Step
3. The diffused weightings and diffused areas are
determined by Step 2. Let LMS filter of size 7x7 be the
HVS filter indicated in Eq. (3).

StepS. Suppose the swapped class matrix leads to higher
reconstructed image quality, the class matrix is modified
as the swapped version. Otherwise, the swapped
members within class matrix are returned to the original
position.

Step6. Another member C (i) in the class matrix is selected, and
then performs Step 4 and 5.

Step7. If any swapping cannot improve the quality of
reconstructed dot-diffused image, the optimization
procedure is terminated. Otherwise, Step 3 to Step 6 are
iteratively performed.

The four final converged class matrix associate to different
diffused weightings and diffused areas with the proposed
optimization procedure introduced above are shown in Table II,
which does not include the class matrices obtained by LMS
filter of size 5x5, 7x7 and 9x9, since these reconstructed results
are not superior to the one obtained by filter of size 3x3.

4. Experimental Results

In this section, eight different testing images are employed as
shown in Fig. 4. The Eq. (3) is adopted for evaluating average
PSNR, where the LMS-trained filter of size 7x7 is involved in
the performance evaluation.

First, we try to determine the best diffused weighting and the
corresponding diffused area. Figure 5(a)-(d) shows the dot-
diffused images processed by the four optimized class matrix
with different diffused weighting of size. Among these, Fig. 5(a)
has the maximum PSNR of 33.3 dB which associates to LMS



filter of size 3x3. The exact coefficient values are shown in Fig.
6, where the variable x denotes the current processing pixel. The
average PSNR versus the class matrices derived from different
diffused area are shown in Fig. 7. It is clear that the image
quality decreases according to the increasing in diffused area,
which is quite reasonable that the correlation decreases as
distance increasing from the center. Hence, in this work the
class matrix trained by LMS filter of size 3x3 as shown in Table
1T is employed for the proposed dot diffusion.

A series of experiments are conducted for comparison
between Mese’s and the proposed dot diffusion. In Mese’s dot
diffusion, the sole tone 16 is utilized for class matrix
optimization. Conversely, in this work, eight nature images are
employed for optimization. In Fig. 8, the whole grayscales
ranging from 0 to 255 are involved for testing. It is clear that the
proposed method is mostly superior to Mese’s method. The
average PSNR of the proposed method and Mese’s method are
35.26 dB and 32.46 dB, respectively. Another comparison is
conducted with ramp map as shown in Fig. 9. The result is
complied with the former experiments as well, where the PSNR
of the proposed method and the Mese’s method are 35.1 dB and
32.4 dB, respectively.

Figure 9 shows the halftone results obtained by various
halftoning methods, which include error diffusion by Floyd [5],
Jarvis [6], Stucki [7], Ostromoukhov [8] and Shiau [11]; dot
diffusion by Knuth [3] and Mese [4]; ordered dithering [1] with
Classical-4 clustered-dot dithering and Bayer-5 dispersed-dot
dithering; and DBS [13]. According to the experimental results,
it is clear that the proposed dot diffusion has close image quality
to error diffusion and far better than ordered dithering. Although
the quality is still a bit lower than some error diffusion and DBS,
the parallel processing nature is still an attractive advantage
comparing to error diffusion or iteration-based DBS.

5. CONCLUSIONS

In this work, the parallel processing feature of dot diffusion is
preserved, while the deficiency gap with the error diffusion is
reduced. A new optimized class matrix is proposed based on the
new diffused weighting. Four different diffused areas are tested
as well and proved that the one of size 3x3 offers the best result.
Another difference from the previous Mese’s optimization
approach is that the nature images are involved in the class
matrix optimization, while Mese’s approach solely adopts tone
16 as the training set. Apparently, the proposed dot-diffused
results mostly have better quality in other tones. As
demonstrated in the experiments, the quality of the proposed dot
diffusion is close to error diffusion. Moreover, since the
important parallel processing benefit is preserved in the
proposed do diffusion, it provides higher executing efficiency
than DBS or error diffusion. Hence, the proposed do diffusion
has great contribution to practical printing industry or color
quantization applications.
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Fig. 1. Dot diffusion flow chart.
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Fig. 2. Diffused weighting employed in Knuth’s [3] and Mese’s
[4] dot diffusion.
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Fig. 5. Halftone images obtained with class matrix of different
diffused areas. (a) Diffused weighting of size 3x3. (PSNR =
33.3 dB)(b) 5x5. (PSNR = 31.85 dB) (c¢) 7x7. (PSNR = 31.08
dB) (d) 9x9. (PSNR = 30.94 dB)
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Fig. 6. LMS-trained diffused weighting of size 3x3.
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Fig. 7. Average PSNR using 8 testing images obtained by the
proposed class matrices of size 8x8.
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Fig. 8. PSNR v.s. Grayscale comparison between the proposed
and Mese’s dot diffusion.
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Fig. 9. Performance comparisons between various methods. (a)
DBS [13]. (PSNR = 40.23 dB) (b) Floyd [5], (PSNR = 34.58 dB)
(c) Jarvis [6], (PSNR = 28.41 dB) (d) Stucki [7], (PSNR = 29.05
dB) (e) Ostromoukhov [8]. (PSNR = 35.33 dB) (f) Shiau [11].
(PSNR = 34.67 dB) (g) Knuth [3]. (PSNR = 30.6 dB) (h) Mese
[4]. (PSNR = 31.52 dB) (i) Classical-4 clustered-dot dithering.
(PSNR = 18.91 dB) (j) Bayer-5 dispersed-dot dithering. (PSNR
=29.34 dB)

TABLE I. CLASS MATRICES OBTAINED BY KNUTH [3] AND MESE[4].

34 [ 48 140 | 32 | 29 | 15 | 23 | 31

42 | 58 | 56 | 53 | 21 5 7 10

50 | 62 | 61 | 45 | 13 1 2 18

38 | 46 | 54 | 37 | 25 | 17 9 26

28 | 14 | 22 | 30 | 35 | 49 | 41 | 33

20 | 4 6 11 | 43 | 59 | 57 | 52

1210 3 19 | 51 | 63 | 60 | 44

24 | 16 8 27 | 39 | 47 | 55 | 36
(a) Class matrix proposed by Knuth [3].
47 [ 31 | 51 |24 |27 | 45 5 21
37 [ 63 | 53 | 11 | 22| 4 1 33
61 0 | 57 | 16 | 26 | 29 | 46 8
20 | 14 9 | 62| 18 | 41 | 38 6
17 | 13 | 25 | 15 | 55 | 48 | 52 | 58
3 7 | 2 321303456 60
28 | 40 | 36 | 39 |49 |43 |35 | 10
54 123 |50 | 12 | 42|59 | 44| 19

(b) Class matrix proposed by Mese [4].

TABLE II. CLASS MATRIX OBTAINED BY THE PROPOSED
OPTIMIZATION PROCEDURE.
29 | 16 | 58 | 10 | 51 18 | 41 15
57 | 63 | 42 6 14 | 44 | 21 | 45
34 0 62 | 30 | 26 5 46 | 37
32 123124 | 60 2 4 47 | 12
7 19 | 25 11 | 54 | 52 | 48 | 43
49 | 17 | 36 | 20 8 9 61 | 59
28 | 40 | 39 | 31 3 35 | 56 | 27
1 33 |50 | 22|53 |55]38 13
Diffused weighting of size 3x3.




