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ABSTRACT 

In this work, a high quality halftone image obtained by dot 
diffusion is proposed to reduce the deficiency gap with the error 
diffusion. Four kinds of filters with various sizes obtained by 
Least-Mean-Square (LMS) are also introduced to simulate the 
human visual system (HVS). These filters are employed in the 
optimization procedures for class matrix of size 8x8. According 
to numerous of simulations, an optimized diffused weighting is 
determined. Many well-known halftone methods, which include 
direct binary search (DBS), error diffusion, ordered dithering, 
and previous dot diffusion are also involved for comparisons. 
As demonstrated in the experiments, the quality of the proposed 
dot diffusion is close to some error diffusion and is even 
superior to the well-known Jarvis and Stucki error diffusion or 
Mese’s dot diffusion. Moreover, the dot diffusion inherently has 
the parallel processing advantage, which provides much higher 
executing efficiency than DBS or error diffusion. 
Key words: dot diffusion, error diffusion, direct binary 
search, ordered dithering, digital halftoning. 
 

1. INTRODUCTION 
Digital halftoning [1]-[2] is a technique for changing grayscale 
images into halftone images. These halftone images can 
resemble the original images when viewing from a distance by 
lowpass filtering in human visual system (HVS). The technique 
is used widely in computer printer-outs, printed books, 
newspapers and magazines, because these printing processes are 
limited to the black-and-white format (with and without ink). 
Another major application of digital halftoning is color 
quantization with a limited color palette. There are several kinds 
of halftoning methods, which include ordered dithering [1], dot 
diffusion [3]-[4], error diffusion [5]-[12] and direct binary 
search (DBS) [13]. Of these, dot diffusion has compromised 
image quality and processing efficiency.  

The ordered dithering is a parallel method, and is generally 
distinguished into clustered-dot and dispersed-dot halftone 
screens. The image quality of ordered dithering is inferior to 
DBS, error diffusion, as well as dot diffusion, since the error 
induced from the halftoning procedure is retained in each 
halftone pixel. Conversely, error diffusion does not have the 
above-mentioned problem, because the error is designed to be 
compensated by the neighborhood pixels. Hence, the resulting 
error-diffused halftone has the pleasant-looking blue noise 
property [14]. However, the error diffusion was born of lacking 
parallel processing advantage. Hence, the processing efficiency 
is much inferior to ordered dithering. For the time being, the 
DBS is the most powerful halftoning when it comes to image 
quality. However, the time-consuming iteration-based approach 
makes it difficult to be realized in commercial printing devices. 

Dot diffusion inherently has the parallel processing benefit by 
cooperating with the so-called class matrix. Previous studies 
related to the dot diffusion have focused on class matrix 

optimization by Knuth [3] and Mese [4]. However, the diffused 
weighting of the previous two works are fixed in integer fashion, 
which makes the class matrix optimization itself problematic. In 
this work two issues: diffused weighting and the size of the 
diffused area are determined to create better halftone quality 
which is also able to approximate the error diffusion halftone 
while maintaining the parallel processing characteristic.  

 
2. OVERVIEW OF DOT DIFFUSION 

Suppose the original image of size x  is divided into non-
overlapped blocks of size x . An important media called 
class matrix, which is of the same size as a divided block, is 
employed to determine the processing order in a block. The 
flow chart of dot diffusion is quite similar to error diffusion as 
shown in Fig. 1. Here we define 255 as a white pixel and 0 as a 
black pixel. The variable  denotes the current input value and 

 is the diffused error accumulated from the neighboring 
processed pixels. The variable  represents binary output at 
position  and  is the modified gray output. The variable 

 denotes the difference between the modified gray output  
and binary output , and the relationships of ,  and  
are organized as below.  

where the variable  is the diffused weighting, and the one 
appears in Knuth’s and Mese’s methods is shown in Fig. 2. The 
variable x denotes the current processing pixel, and the integers 
in the eight-connected neighborhood are diffused proportions. 
Since the neighbors in vertical and horizontal orientations are 
closer to the center, hence the weightings are larger than 
diagonal orientations. Note that, the error can only diffuse to 
neighbor pixels that are not binarized yet, which associates to 
the members in the class matrix with higher value. The variable 

 is the summation of the diffused weights 
corresponding to those unprocessed pixels. 

As expected by the readers, the processing orders within the 
class matrix have great influence to the reconstructed image 
quality. Knuth’s optimization approach tries to reduce the 
number of baron (pixel with no higher pixel value surrounded) 
and near-baron (pixel with only one higher pixel value 
surrounded) in the class matrix. The concept is straight forward 
since the baron results in non-diffusible quantized error, and the 
near-baron only allows quantized error diffuses in one way.  
However, the Knuth’s approach does not take the human visual 
system (HVS) into consideration. For this, Mese’s method 
adopts the HVS in [4] to determine an optimized class matrix. 
During his optimization, the single tone 16 is employed to 
develop the final class matrix as shown in Table I. 
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Although the Mese’s class matrix provides excellent 
reconstructed halftones as will be shown in Section 4, we 
believe that there are still some rooms left for improving. For 
instance, the optimization of the diffused weighting and the 
diffused area, these will be carefully manipulated in the next 
section. Another problem in the optimization process of Mese 
approach solely single tone of value 16 is utilized in the class 
matrix training, which causes the reconstructed class matrix 
difficult to render image regions with different tones.  

 
3. IMPROVED DOT DIFFUSION USING OPTIMIZED DIFFUSED 

WEIGHTING AND CLASS MATRIX 
As revealed in the last paragraph of Section 2, two parameters 
of dot diffusion play important roles in the class matrix 
optimization: diffused weighting and diffused area. In this 
following, some filters of different sizes trained by the Least-
Mean-Square (LMS) are taken as diffused weightings with 
alternative diffused areas. The LMS-trained filters are further 
employed to produce the corresponding optimized class 
matrices. The details will be elaborated in the following sub-
sections. It is an intuition that as the size of class matrix 
growing, the benefit of parallel processing decreases as well. In 
order to preserve the important parallel processing advantage, 
we try to develop an optimized class matrix of size 8x8 
throughout this work.  
 3.1 LMS-trained filters and performance evaluation 
The performance evaluation employed in this work is defined as 
below. For an image of size x , the quality of a halftone 
image is defined as 

where  is the original grayscale image,  is the 
corresponding halftone image,  is the LMS-trained 
coefficient at position  and  is the support region of the 
LMS-trained filter. The procedures of how to obtain a LMS 
filter will be derived in the next section. Since the LMS filter is 
used to resemble the HVS, the values inside the filter are taken 
as the diffused weightings and the size can be taken as the 
diffused area. In the optimization procedure, the support region 

 of four different sizes, 3x3, 5x5, 7x7 and 9x9 are utilized for 
testing. To measure the quality of halftone image, the size of  
is fixed at 7x7.  

The LMS-trained filter  can be obtained by psychophysical 
experiments [15]. The other way to derive  can use a training 
set of both pairs of grayscale images as Fig. 3 and good halftone 
result of them. In this work, error diffusion, ordered dithering 
and direct binary search (DBS) are involved to produce the set. 
Here we use LMS to produce  as follows, 

where  is the optimum LMS coefficient,  is the MSE 
between  and ,  is the adjusting parameter used to 
control the convergent speed of the LMS optimum procedure, 
which is set to be  in our experiments. Some other quality 
evaluation methods can be found in [16] and [17]. Note that, 
these filters are all with some basic human visual system 
characteristics: (1) the diagonal has less sensitivity than the 

vertical and horizontal directions and (2) the center portion has 
the highest sensitivity and it decreases while moving away from 
the center. 
3.2 Class matrix optimization using LMS-trained filter 
The LMS-trained filters obtained above are employed for class 
matrix optimization. Since the LMS filters have the 
characteristics of HVS, it is reasonable to be taken as the 
diffused weighting and diffused area. During the class matrix 
optimization, each member in the class matrix is successively 
swapped with one of the other 63 members and applied to the 
eight testing images as shown in Fig. 3. The quality evaluation 
approach introduced in Section 3.1 is employed to evaluate the 
two average PSNRs (before swapped and after swapped) of the 
corresponding dot-diffused halftone images. Only the swapped 
result with the highest PSNR will be retained as a new class 
matrix, and then conducts the same above-mentioned procedure 
until any swapping cannot improve the PSNR anymore. Note 
that, the Mese’s approach only adopts single tone of value 16 
for class matrix training, which causes the reconstructed class 
matrix difficult to perfectly render image regions with different 
tones. Conversely, in this work eight different nature images are 
involved in training procedure, which makes the reconstructed 
class matrix easier adapts to different tones in an image. The 
steps of the optimization procedure are organized as below. 
Step1. Given an initial class matrix  (The Mese’s class matrix 

is employed). 
Step2. Four LMS filters of sizes 3x3, 5x5, 7x7 and 9x9 are 

employed as diffused weighting with different diffused 
areas in the testing. 

Step3. Suppose the members within class matrix are taken as 1-
D sequence. Each member  in the class matrix is 
successively swapped with one of the other 63 members 

, where .. 
Step4. Evaluating the average PSNR of the dot-diffused 

halftone images using the class matrix derived from Step 
3. The diffused weightings and diffused areas are 
determined by Step 2. Let LMS filter of size 7x7 be the 
HVS filter indicated in Eq. (3). 

Step5. Suppose the swapped class matrix leads to higher 
reconstructed image quality, the class matrix is modified 
as the swapped version. Otherwise, the swapped 
members within class matrix are returned to the original 
position.  

Step6. Another member  in the class matrix is selected, and 
then performs Step 4 and 5. 

Step7. If any swapping cannot improve the quality of 
reconstructed dot-diffused image, the optimization 
procedure is terminated. Otherwise, Step 3 to Step 6 are 
iteratively performed. 

The four final converged class matrix associate to different 
diffused weightings and diffused areas with the proposed 
optimization procedure introduced above are shown in Table II, 
which does not include the class matrices obtained by LMS 
filter of size 5x5, 7x7 and 9x9, since these reconstructed results 
are not superior to the one obtained by filter of size 3x3. 

 
4. Experimental Results 

In this section, eight different testing images are employed as 
shown in Fig. 4. The Eq. (3) is adopted for evaluating average 
PSNR, where the LMS-trained filter of size 7x7 is involved in 
the performance evaluation. 

First, we try to determine the best diffused weighting and the 
corresponding diffused area. Figure 5(a)-(d) shows the dot-
diffused images processed by the four optimized class matrix 
with different diffused weighting of size. Among these, Fig. 5(a) 
has the maximum PSNR of 33.3 dB which associates to LMS 
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