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ABSTRACT

Here we present a new approach to automatically detect and
count breeding Greater Flamingos (Phoenicopterus Roseus)
on aerial photographs of their colonies. We consider a stochas-
tic approach based on object processes also called marked
point processes. The objects represent flamingos which are
defined as ellipses. We formulate a Gibbs density, associ-
ated with the marked point process of ellipses, which is de-
fined w.r.t a Poisson measure. Thus, the issue is reduced to
an energy minimization, where the energy is composed of
a regularization term (prior density), which introduces some
constraints on the objects and their interactions, and a data
term, which links the objects to the features to be extracted
in the image. Then, we sample the process to extract the
configuration of objects minimizing the energy by a new and
fast birth-and-death dynamics, leading to the total number of
birds. This approach gives counts with good precision com-
pared to manual counts. Additionally, this approach does not
need image pre-processing or supervision of the extraction by
an operator thus considerably reducing the overall processing
time required to get the estimate.

Index Terms— bird colony, Object extraction, marked
point processes, stochastic modeling, birth/death dynamics.

1. INTRODUCTION

During breeding seasons, flamingos gather in a large colony.
Thus, specialists take advantage of it to asset the number of
flamingos in the colony. Since the 60’s, several techniques
have been developed to estimate the number of flamingos
from aerial images. Most of them are highly supervised. They
are based on an expert counting on some predefined small ar-
eas. The total number of flamingos is then estimated from
an interpolation procedure. This methodology is therefore
time consuming for the experts and lacks precision. General
sofware for object detection based on classical image process-
ing tools such as mathematical morphology [1] or template

matching [2] appear to be unsatisfactory. A more dedicated
approach embedding a geometric model of the flamingos and
some constraints on their spatial repartition is required.
We propose in this paper, a new method for automatically
estimating the size of flamingo populations based on object
processes. We consider an ellipse as our reference object to
model flamingos. Indeed, on aerial images, flamingos look
like ellipses. Greater flamingos are mainly coveredwith white
plumage. This fact gives a feature to evaluate, with the Bhat-
tacharrya distance, the contrast between the background and
flamingos themselves. The density associated with the marked
point process of ellipses is defined with respect to the Poisson
measure. Moreover, by formulating themodel as a Gibbs den-
sity, we reduce the problem to an energy minimization. This
energy is decomposed into a data term to locate flamingo on
the image, and a prior term which introduces constraints be-
tween the objects of the configuration.

2. A MARKED POINT PROCESS MODEL

2.1. Definition and notation

We model aerial images as composed of flamingos whose po-
sitions and attributes are some realization of a marked point
process X , see [3] for more details. X is also a random vari-
able whose realizations are random configurations of objects
belonging to a set space χ = P ×M, whereP is the position
space, andM the space of the marks. We note Φ the space of
all configurations of a finite number of objects. The probabil-
ity distribution PX(.) of the stochastic process is uniformly
continuous with respect to the Poisson measure μ(.) of inten-
sity λ(.) on χ. Then, by using the Gibbs energy formulation
of the process density, we define an energy U(x) as :

PX(dx) =
1

Z
exp(−U(x))μ(dx) (1)

where Z is a normalizing constant. This energy will be mini-
mized on Φ by the flamingo extraction. It takes into account
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the interactions between the geometric objects (the prior en-
ergy Up(x)), and the way they fit to the data (the data energy
Ud(x)) :

U(x) = Up(x) + Ud(x) (2)

2.2. Objects of interest

The 2Dmodel, used to extract flamingos, consists of a marked
point process of ellipses. The associated set space χ is :

χ = P ×M = [0, XM ]×[0, YM ]×[am, aM ]×[bm, bM ]×[0, π[

where XM and YM are respectively the width and the length
of the image I, (am,aM ) and (bm,bM ) respectively the mini-
mum and the maximum semimajor axis and semiminor axis,
and θ ∈ [0, π[ the orientation of the objects.

2.3. Prior energy

As we aim at detecting individuals in dense populations, we
model flamingos as possibly slightly overlapping ellipses xi ∼r

xj . Then, the prior energy Up(x) that introduces interactions,
penalizes configurations according to the overlapping objects
area, see [4] for more details:

Up(x) = γp

∑
xi∈x

maxxj∼rxi
A(xi, xj) (3)

where A(xi, xj) ∈ [0, 1] is an overlapping coefficient and γp

is a weight which ponders the repulsion between the objects
of the process. Each object is penalized depending on the
maximal overlapping it exhibits with neighboring ellipses.

Fig. 1. Overlapping ellipses

2.4. Data energy

In flamingo populations, each flamingo can be modeled as
a bright ellipse surrounded by a darker background. Thus,
we define the boundary of an ellipse F(x) as the set of P
contained between the given ellipse x = (p, k), where k =
(a, b, θ) are the marks, and a concentric one x′ = (p, k′),
with k′ = (a + ρ, b + ρ, θ). This boundary will stand for

the background. To evaluate the contrast between the ellipses
and the background, we calculate the Bhattacharya distance
dB(x,F(x)) between the reflectance distributions of the ob-
ject and its boundary as follows:

dB(x,F(x)) = 1−

∫ √
h1(x)h2(x)dx, (4)

where h1(x) (resp. h2(x)) is the empirical distribution of the
pixels belonging to x (resp. F(x)).
The data energyUd(x) associated with the object x is then

given by:

Ud(x) = Qd(dB(x,F(x))) (5)

whereQd(dB) ∈ [−1, 1] is a quality function which gives
some positive value to small Bhattacharya distance (weakly
contrasted objects) and negative value (well located objects)
otherwise.

Qd(dB) =

{
(1 − dB

d0

) si dB < d0

exp(− dB−d0

D
)− 1 si dB � d0

(6)

whereD is a scale parameter calibrated to 100.

Fig. 2. An ellipse and its boundary

2.5. Parameter estimation

The data term involves a parameter d0 which can be inter-
prated as the mean value of the contrast between a flamingo
and its neighborhood. We propose to estimate it by consider-
ing a weighted histogram.
For each pixel s of the image I , we compute the data energy
Us

d(c) corresponding to a disc whose radius is equal to the
minimal size of flamingos to be extracted in the image. This
map will be used for estimating the value of d0. It requires an
initial value which has been calibrated to d0 = 10.
We derive a predetection map by computing the following
rate:

∀s ∈ I, b(s) = 1 + 9
maxt∈IU

t
d(c)− Us

d (c)

maxt∈IU
t
d(c)− mint∈IU

t
d(c)

(7)

The higher b(s), the more likely a flamingo is in s.
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Usually, flamingo color is not homogeneouswithin a given
image because of the focal of the camera. Thus, we present a
local parameter estimation method. To compute d0, we need
to estimate the mean of flamingo color in small squared area
of the initial image. This estimation is decomposed in three
steps: the construction of a weighted histogram of the initial
image, a first estimation of the parameters and a final filtering
of the parameter previously estimated over the image:

- The weighted histogram is simply obtained by constructing
the histogram of the initial image whose pixels are weighted
by the respective pixels of the predetection map. - For each

squared region, we extract the mean of the colour in the con-
sidered region by detecting the maximum of the weighted his-
togram. - Once done for every squared region of the image,

we compute a spatial filtering of the previous parameters to
correct biased estimates in low density areas.

d0 is then computed from this flamingo mean radiometry
estimation.

3. BIRTH AND DEATH DYNAMICS

For optimizing the model, we consider a simulated annealing
based on a birth and death process. This process has first
been proposed in [5], where the proof of the convergence is
given in the case of disks, the generalization to ellipses being
straightforward.
The algorithm simulating the process is defined as fol-

lows:

• Main program: initialize the inverse temperature pa-
rameter β = β0 = 50 and the discretization step δ =
δ0 = 20000 and alternate birth and death steps

– Birth step: for each s ∈ S, if no object is al-
ready alive, we add an object in s with probability
δB(s) where B(s) is derived from the predetec-
tion map:

∀s ∈ I, B(s) =
zb(s)∑
t∈I b(t)

(8)

where z is a parameter of the process.
– Sorting step: once the birth step is finished, we
compute the data term Us

d(c) of the current con-
figuration objects uc. Then, we sort them, from
increasing, according to their data energy.

– Death step: for each object taken in this order,
we compute the death rate as follows:

d(uc) =
δaϕ(uc)

1 + δaϕ(uc)
(9)

where aϕ(uc) = exp(−ϕU(uc)), then the object
uc dies with probability d(uc).

– Convergence test: if the process has not con-
verged, decrease the temperature and the discretiza-
tion step by a given factor and go back to the birth
step. The convergence is obtained when all the
objects added during the birth step, and only these
ones, have been killed during the death step.

4. RESULTS AND DISCUSSIONS

We present in figure 4 and figure 3 two results on real aerial
images. Computation took a couple of minutes for each re-
sult, which depends on both the number of objects to be ex-
tracted and also on the size of the image.

Fig. 3. Top: initial population image. Bottom: Sample of the
extraction

To evaluate these results, we have computed the detec-
tion rate compared to a manual extraction, executed by an ex-
pert.The different datasets have been divided in three classes
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Fig. 4. Sample of the extraction on a Mauritanian colony
(only the ellipse center is pointed)

depending on the image quality and the population density.
The false alarm rate is always negligible and the detection rate
is given in figure 5. In most cases, the desagreement between
the expert and our detection corresponds to ambiguous cases
where no decision can reasonably be taken from the image
alone.

5. CONCLUSION

In this paper, we proposed an algorithm to automatically ex-
tract flamingo populations from aerial images. Based on a
stochastic geometry
approach, we have shown the efficiency of the detection

on low resolution images where it is even tricky for the hu-
man eye to distinguish flamingos between themselves. The
automatic paramater estimation gives a major advantage over
other current techniques of detection because no preprocess-
ing is needed. Futhermore, execution time requirements are
reasonable to obtain flamingo population extractions because
of the proposed birth and death process which outperform
classical RJMCMC schemes [4].
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Fig. 5. Resulting statistics
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