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ABSTRACT

Content adaptive mesh generation is an important research area with
many applications in image processing and computer vision. The
main issue is to represent an image with the pixels that preserve
most of the amount of its information. The obtained pixels are then
used to generate a mesh that approximates the original image. This
work presents a novel iterative method that simultaneously reduces
the number of the pixels and generates the mesh approximation of an
image. The main idea is to incorporate binary space partitions along
with singular value decomposition to cluster the pixels into planes
and thus the nodes of the mesh are nothing but the pixels that define
each plane. Compared to previous techniques, the proposed method
leads to a 30% reduction in the size of the approximating mesh. In
addition, the method minimizes the artifacts obtained from the re-
construction of the original image from the approximating mesh.

Index Terms— Image sampling, image coding, clustering
methods, mesh generation, singular value decomposition

1. INTRODUCTION

Content adaptive mesh representation of an image is an important re-
search field with many applications in image processing [1–5] and in
computer vision [6]. The aim of these techniques is to approximate
an image with a polygonal mesh. The approximation mesh is usu-
ally constructed in two steps. First, the redundant pixels are removed
from the image and only the ones with most of the information, the
significant pixels, are retained. Then, a mesh is generated from the
remaining pixels using a triangulation scheme.

The advantage of such approximation is that it allows the im-
age to have a more compact representation. The approximating or
representing mesh usually possesses a lot less number of pixels (re-
ferred to as the mesh nodes) than the original image. In addition, the
removed pixels from the original image are reconstructed by inter-
polating the significant pixels using the mesh [4, 5].

The major issue in this research is in the methodology that
should be used to find the lowest possible number of significant
pixels in an image while preserving its content. As a consequence,
the aim becomes equivalent to finding the non-uniform samples of
the image [1, 4, 7, 8]. This makes the methods developed for pro-
gressive image coding and transmission, as in [7, 9], relevant since
non-uniform sampling is used there to derive the coding schemes.
These can then be easily followed by a triangulation method to
generate the adaptive mesh as done in [4].

The main disadvantage in most of the developed techniques,
is the necessity to construct the approximating mesh in two steps.
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The non-uniform samples have to be first extracted then the mesh is
formed upon them. This makes the mesh relatively dependent on the
samples found while it should be the other way around. This is justi-
fied since reconstructing the missing samples using the mesh highly
depends on the ability of each triangle of the mesh to represent and
recover the missing samples.

To overcome this issue, a novel iterative method is derived that
generates a triangular mesh while reducing the number of points at
the same time. The key issue is to combine the binary space parti-
tions (BSP) along with the singular value decomposition (SVD) to
model the pixels as intensity planes in order to both cluster the pix-
els and generate the mesh. The idea behind this work is that each
triangle in the mesh can be defined as a plane while a plane can also
be uniquely defined by three points. Thus, by defining a plane, a
triangle of the mesh is obtained where the nodes of the triangles are
the non-uniform samples.

Section 2 summarizes the state of the art algorithms. Section 3
establishes the proposed content adaptive mesh generation method.
Section 4 assesses the results and compare the performance of the
proposed algorithm with other techniques. Finally, conclusions are
drawn in Section 5.

2. RELATED WORK

2.1. Yang’s algorithm

In [4], or Yang’s algorithm, a Delaunay triangulation based con-
tent adaptive mesh representation algorithm was derived in which
the nodes of the mesh are the non-uniform adaptive samples of the
image. A pixel is chosen to be a non-uniform sample if the second
directional derivative is significant. Let G(x, y) denote the largest
magnitude of the second derivative of each image pixel I(x, y):

G(x,y) =
max

θ∈[0,2π]

˛̨
˛I′′

θ (x,y)
˛̨
˛ (1)

where θ ∈ [0, 2π] is the direction of the second derivation of the
image function. All pixels where G(x, y) is above a predefined
threshold are put into a feature map. Then a modified version of
the classical Floyd-Steinberg algorithm is used to diffuse the error
of a pixel to its four neighbors. As experiments showed, Yang’s al-
gorithm worked better if the serpentine raster order was used instead
of the standard raster order of the diffusion algorithm. The reason
for the improvement is that the diffused errors of the pixels are prop-
agated in a more balanced manner with its neighbors.

2.2. Ramponi’s algorithm

In [7], or Ramponi’s algorithm, the main issue was to derive non-
uniform sampling technique that can be used for progressive image
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coding. Given an image, the initial estimate of the reduced set of
pixels in the image are determined by computing the skewness of
the pixels. The skewness s of a pixel evaluated on a m × n mask K
is defined as:

s (x, y) =
1

m × n

mX
k=1

nX
l=1

(I (k, l) − μ (k, l))3 , (2)

where μ is the mean of the intensity values of the pixels in K. To
make this measure insensitive to the dynamic range of the image, it
is better to normalize (2) as:

s̄ (x, y) =
|s (x, y)|

max (|s (x, y)|) , (3)

where s̄ is the normalized skewness and the denominator is the max-
imum skewness obtained in the image. Then, a threshold is defined
and all the pixels whose normalized skewness s̄ (x, y) is higher than
the threshold are saved in a feature image F .

To further reduce the number of pixels and obtain a more com-
pact representation of the image, the feature image is decimated by
defining a forbidden circular area of radius F around each pixel in
it. Consequently, if a pixel belongs to the area of another pixel, it is
deleted from F .

To generate the adaptive mesh, Ramponi’s algorithm was fol-
lowed in this work by a Delaunay triangulation step to generate a
primary mesh. Then, new pixels were recursively added to the mesh
at the locations where the error, see Section 3.1, of the reconstructed
pixels is higher than a predefined threshold as was proposed in [6].

3. THE PROPOSED CONTENT ADAPTIVE MESH
REPRESENTATION METHOD

Given an input image, the main objective of this work is to construct
an adaptive mesh that approximates the original image with the low-
est number of non-uniform samples. The proposed method is based
on the Binary Space Partitioning (BSP) principle [10]. BSP clusters
a data set recursively. In each step, one cluster is divided into two
sub-clusters if some predefined criteria are not met. This is the main
motivation behind using BSP to represent the image with a content
adaptive mesh.

The criteria defined in this work to subdivide a triangle, are the
maximum number of points that the triangle can hold and the re-
construction error of the pixel intensities from the triangle. The
flowchart of the BSP based algorithm is illustrated in Fig. 1 and the
rest of this section is dedicated to explain it. For simplicity, the pro-
posed technique is derived for gray-scale images. Its extension to
color images is easily obtained.

3.1. Error measurement

To give a qualitative statement about the mesh approximation, it is
necessary to have a quantity that measures the error between the lu-
minance values I(x, y) of the original image and those of the ap-

proximated image Î(x, y). A well known image quality measure is
the peak signal to noise ratio (PSNR) [11]. The PSNR for a grey-
scale W × H image where the intensity values vary between 0 and
255 is:

PSNR = 10 log

„
2552

MSE

«
, (4)

where MSE is the mean squared error defined by:

MSE =
1

W · H
W−1X
k=0

H−1X
l=0

“
I (x, y) − Î (x, y)

”2

. (5)

A typical value for the PSNR to obtain a good image reconstruction
is between 30 and 40 dB. One might also think of using the MSE as
a measure instead of the PSNR operation as in [1, 4] since both are
equivalent.

3.2. Modeling the Pixels with Intensity Planes

The points of an image describe a 3D space represented by the co-
ordinates of the pixel in the image and the corresponding intensity.
When constructing the mesh, a triangle T of the mesh should repre-
sent the pixels that it covers as accurately as possible. Each triangle
is formed by three points which are parts of the nodes or the vertices
of the mesh. In a similar manner, a plane can also be defined by the
three vertices of the triangle.

Let Vi(xi, yi, Ii) with i = 1, 2, 3 be the three vertices of T .
The plane P describing these vertices is defined using the normal
equation as: −→n · P (x, y, I) + d = 0, (6)

where P (x, y, I) is a point lying on the plane, d is a real constant

and −→n is the normal vector of the plane −→n =
h

a
b
c

i
. The normal

vector can be computed with the three vertices Vi(xi, yi, Ii) as the
cross product of any two edges of the triangle:

−→n = [V2 − V1] × [V3 − V1] . (7)

From (7), the equation of the plane can be then directly obtained:

Î = −ax + by + d

c
, (8)

where Î is the modeled intensity of all the pixels lying inside the
triangle T . Using this equation, it is possible now to reconstruct
the intensity of each pixel that lies inside T to compute the PSNR.
Consequently, one can easily check now how does each triangle rep-
resent the pixels that lies within by simple computation of the PSNR
described in (4). If the PSNR of the reconstructed intensities of T
is lower than a predefined threshold ε, e.g. 30 dB, then T should be
further decomposed into two smaller triangles. This step is repeated
until ε is satisfied across the image.

What remains is to determine the pixels that lies inside T . On
the one hand, the points inside the triangle have in common that they
lie on the same side of each of the triangle’s edges. On the other
hand, the center w(x, y) of T is always lying inside the triangle.
Thus, every point in T should be lying on the common side of all
triangle’s edges as well. In order to verify this property, we need to
recall the 2D normal equation of a triangle’s edge:

−−−→nedge · V (x, y) + d = 0. (9)

The vector −−−→nedge is the normal to the edge defined as:

−−−→nedge =

»
yi − yj

xj − xi

–
. (10)

where (xi, yi) and (xj , yj) are the coordinates of the vertices Vi and
Vj of the triangle’s T edge in the image [12].

A point P (x, y) is defined to be lying in the triangle if the fol-
lowing equation is fulfilled to the three edges of the triangle simul-
taneously:

sign(−−−→nedge · P (x, y)) = sign(−−−→nedge · w(x, y)), (11)

where sign is the sign operator. This equation suggests that a point
P lies inside T if the sign of dot product of P with the normal edge−−−→nedge is the same as that of the center of the triangle w for each edge
of T [12].
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3.3. Determining the Optimal Partition Line

As previously said, if the PSNR does not satisfy ε or the number
of points is larger than the predefined maximum triangle’s size, a
triangle T in the mesh has to be divided into two new ones. In order
to let BSP decide how a triangle should be divided, the Singular
Value Decomposition (SVD) is employed [13].

To accomplish this issue, the points P (x, y, I) of the triangle
have to be arranged into a measurement matrix K:

K =

2
4 x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

I1 I2 I3 . . . In

3
5 . (12)

K has then to be centered, i.e. the mean is subtracted, as in any
SVD based clustering algorithm to obtain the centered measurement
matrix K̃. Then, the SVD of K̃ is computed as:

K̃ = UΣVT . (13)

The columns of U show the directions of the largest variances of the
measurement matrix K̃. The first column of U, i.e. u = (xu, yu),

shows the direction of largest variance in K̃. It can also be shown
that u is perpendicular to the sought partition line [13]. Therefore,
the vector of the partition line is nothing but:

�l =

»
yu

−xu

–
. (14)

Using �l, it is possible to compute the new vertex, or the non-uniform
sample, as the intersection of the partition line and the triangle’s
edge. The line equation of a triangle’s edge is given by:

V1 + α · (V2 − V1), (15)

and that of the partition line starts in the opposite vertex of the trian-
gle’s edge:

V3 + β ·�l. (16)

By combining (15) and (16), we obtain the following equation:

ˆ
(V2 − V1) �l

˜ ·
»

α
β

–
= V3 − V1, (17)

were α and β has to be solved. Then, the coordinates of the new
vertex or non-uniform sample is determined by solving (15). In the
case if α is equal to 0 or 1, Equation 15 becomes ill conditioned and
the new vertex cannot be computed anymore. To overcome this de-
ficiency, the subdivision of the triangle is conducted by placing the
new vertex in the middle of the triangle’s longest edge. Note that the
constructed mesh in the proposed algorithm does not have necessar-
ily to fulfill the Delaunay condition, see [14] for more information
about Delaunay triangulation.

4. RESULTS AND COMPARISON

Yang’s algorithm has a better performance in term of quality and
compression when compared to other state of the art content adaptive
meshing techniques [4]. Thus, it will be used with the comparisons
done with the proposed method. In addition, the modified version of
Ramponi’s algorithm explained in Section 2.2 will also be analyzed
since no comparisons have been made with it. All computations are
performed by an Intel Pentium M Core Solo Processor (2,0 Ghz,
2MB L2 Cache, 1024 MB RAM) using Matlab.

Fig. 1. Flow chart of the proposed method.

The tests consist of measuring both the performance of the algo-
rithms and the quality of the results obtained. The performance will
be tested by measuring both the mesh size, i.e. the number of the
triangles, and compression ratio given by:

compression ratio =
original image size

number of feature points
, (18)

while the quality will be judged by visual comparison of the recon-
struction of the images from the mesh. In the proposed algorithm,
the mesh is reconstructed by computing the intensities of the pixels
using (8). In order to construct the intensity values in both Yang’s
and Ramponi’s algorithm, the weighted sum of the intensities of the
vertices will be used. The weights assigned to each of the vertices
are the barycentric coordinates of the pixel in the corresponding tri-
angle [14]. This choice is made since it is equivalent to the intensity
reconstruction of the proposed method in (8).

Fig.2 shows the results of the compression ratio and number of
triangles obtained with the different algorithms when applied to the
Lena image. The results are obtained while varying the PSNR be-
tween 25 and 40 dB. As can be seen, the proposed method achieves a
better compression ratio than both of the other techniques especially
at low values of the PSNR. As the PSNR increases, i.e 40 dB, the
improvement of the proposed method to the other becomes smaller.
However, by looking at the number of the triangles of the mesh, it
can be seen that the amelioration is tremendous. The proposed tech-
nique results in 30% less number of triangles than the other tech-
niques even at 40 dB PSNR which corresponds to a high quality of
the reconstruction.

Moreover, the proposed algorithm has a stable transition while
varying the PSNR. It has no abrupt jumps as in Ramponi’s algorithm
since it considers the quality of the reconstruction of each pixels
when constructing the mesh while Ramponi’s method seeks for the
non-uniform samples by simple filtering operations. Such stability is
also noticed in Yang’s technique since it propagates the error using
a diffusion algorithm in order to choose the non-uniform samples.

Fig. 2. Results of the algorithms on the Lena image. Left: Compres-
sion ratio. Right: Number of the triangles in the constructed mesh.

Figures 3 and 4 show the original image of the Lena along with
its reconstruction using all of the methods and by setting the PSNR
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at 30 dB. By comparing the reconstructed images, it can be directly
seen that the proposed method results in less artifacts than the two
other algorithms. This can be noticed at the wooden bar in the left
and in the mirror for example. In addition, the proposed method
preserves the edges. By looking at Ramponi’s method, this cannot
be noticed. Examples are the hat in the mirror and the wooden bar
in the background. With Yang’s method, some artifacts can also
be noticed. Although the edges are sharply represented, but if one
is found in an area with low intensity variation, the reconstructed
edge become blurred and noisy. For convenience, the content adap-
tive mesh representations of the images resulting from the proposed
method and Ramponi’s algorithm are shown in Fig. 5.

Fig. 3. Left: The Lena image. Right: The reconstructed lena image
using the proposed method with 30 dB PSNR.

Fig. 4. Left: The reconstructed lena image using Ramponi’s method
with 30 dB PSNR. Right: The reconstructed lena image using Yang’s
method with 30 dB PSNR.

Fig. 5. The content adaptive mesh representation of the Lena image
at 30 dB PSNR. Left: Outcome of the proposed algorithm. Right:
Outcome of Ramponi’s algorithm.

5. CONCLUSION

This work presents a new content adaptive meshing technique based
on the combination of BSP and SVD to represent the images. The

main idea is to model the intensity variation of the pixels inside a
triangle by a planar equation since both are specified using three
points, which are defined as the non-uniform samples of the image.
This makes the algorithm locate the non-uniform samples of the im-
age by determining the triangles of the mesh that best describe the
points lying within. Results show that the proposed technique has a
better compression ratio than other state of the art techniques and the
obtained mesh size is about 30% less even for high PSNR values. In
addition, visual results show that the main technique reduces the ar-
tifacts in reconstructing the images from the mesh due to adaptivity
gained from the application of both BSP and SVD.
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