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ABSTRACT
To reproduce a face motion from an image sequence, natural

motion parameters provide a semantical and efficient way of

representation. State-of-the art techniques for 3D face motion

estimation employ a limited set of predefined key-shapes of

face structure, and thereby restrict the possible face motion

which can cause distortions. We propose a new approach in

which such distortions are avoided by augmenting a 3D struc-

tural surface face model with a physical motion model orig-

inating from continuum mechanics. Implementation with a

displacement-based FEM does not only describe, but also ex-

plain the motion of the face’s skin tissue caused by the muscle

force parameterized actuations. The correct usage of the mo-

tion model and the mapping of the 3D scene flow to the 2D

optical flow, allow posing the 3D deformation estimation as

an inverse problem, for which a solution has been obtained

using numerical solvers.

Index Terms— Image motion analysis, Finite element

methods, Modeling, Biomechanics, Multimedia communica-

tion

1. INTRODUCTION

The communication of non-verbal face gestures is used in a

wide range of applications as tele-presence and surveillance,

and as an element in the upcoming new media in games and

intuitive user-interfaces with virtual actors. This paper ad-

dresses analysis techniques which allow to replace the raw

video recording of a person by a high level semantical repre-

sentation (to transmit and to store efficiently) and to animate

a face model according to the face appearance.

Facial expressions are 3-dimensional as they are produced

by 3D deformation of the skin, the face shape (due to artic-

ulation) as well as the head movements (3D rigid motion of

the head). Extracting these 3D deformation parameters from

2D image-sequences is an ill-posed problem, due to the per-

spective projection. A-priori knowledge of the face surface
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must be used to solve the problem [1]. The estimation of the

motion of a human face is made by constraining the projec-

tion of the motion of the 3D face (human head) model to the

measured optical flow (apparent motion) [2]. For geometrical

motion models (as Candide [2]) the deformations are prede-

fined with disadvantage that the ‘variation modes’ which are

dropped might prevent some expressions. Also the active ap-

pearance models [3] cannot be deformed to other variations

than those they have been trained for. In spring-based muscle

models [4, 5] an explicit setup of the muscle topology and

the extend functions for muscle control do limit the nonrigid

motion capabilities [6]. Given the usage of the continuum

mechanical Finite Element Model (FEM) for biological ob-

jects in surgery simulation [7], an elastic thin shell FEM [8]

can provide the natural motions of the skin of a human face.

The estimation of the external forces by FEM to constrain

motion is currently seen as state-of-the-art in computer vision

and graphics applications to control nonrigid motions [9, 10].

In this paper we present an innovative solution to the non-

rigid face deformation estimation problem, where the esti-

mated natural nonrigid motion parameters will be those of the

muscle actuations on the face applied by a FEM. The motion

estimation problem and a two step solution is formulated in

section 2. The results of solving the inverse non-rigid mo-

tion estimation problem with the proposed implementations

are given in section 3. In Section 4 some conclusions are

drawn.

2. 3D DEFORMATION ESTIMATION

The problem of estimating the non-rigid motion of the face

can be formulated as: estimating the 3D flow, constrained by

a physically-based face motion model, from a 2D image se-

quence. We argue that by coupling the flow estimation with

the physical model of the skin and muscles, the 3D deforma-

tions of the face model will appear more natural.

The 3D velocity field that describes the motion of a de-

formable surface, imaged by a sensor, is called scene flow,
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W and is related to the (2D) optical flow u as :

u =
dx
dt

=
∂x
∂X

dX
dt

� JXW ≈ JX[Q − X] (1)

where X = [x, y, z]T the starting point of the 3D flow vec-

tor W and Q its ending point, and x the projection of X on

the 2D image. The Jacobian of the scene flow projection, is

JX = f
z

(
1 0 −x

z
0 −1 y

z

)
where f is the focal length of the

perspective imaging system.

Estimating scene flow from a 2D image sequence is a

mathematical inherently ill-posed inverse problem [11]. De-

note by ũ(W) the modeled optical flow. It correspond to the

forward model, being the projection of a 3D scene flow (of

a known 3D motion model) on the image plane using Eq.(1).

The 3D face motion is then estimated by comparing the mod-

eled optical flow to the measured optical flow u. We will

thus select the parameters for which ũ(W) can most likely

resemble u in the least-squares sense following the same for-

mulation of the SfM-problem of [12]:

Ŵ = arg
W

min

[(
m∑

k=1

‖uk − ũ(Wk)‖2

)
+ ψ

]
(2)

where Ŵ is the estimated 3D face deformation; m is the

number of visible face model vertices used in the estimation;

uk(uk, vk) is the measured optical flow at image location xk;

Wk is the face scene flow at the point Xk (corresponding to

xk); ũ is the predicted (modeled) optical flow corresponding

to the scene flow W. For solving Eq.(2) one needs a regu-

larization term ψ and/or constraints on the motion model pa-

rameters. Here, we use the regularization on the image [1] by

‘measuring’ a regularized optical flow field [13]. The remain-

ing ill-conditioning of the problem will be solved via regu-

larization on the 3D surface level [1], imposed by face shape

modeling, as it will be defined in sections 2.3.2 and 2.3.3.

2.1. Separability of Pose and Shape

The a-priori scene knowledge for 3D motion estimation from

an image sequence, may be given under the form of 2 sets of

information which are closely related to each other, namely

the a-priori structure and the motion model knowledge.

Forchheimer [14] presented this as part of the geometrical

face motion model. For physics-based models, Terzopoulos

and Witkin [15] suggested that the mechanical equations of

the motion can be decomposed in a rigid and a nonrigid part.

The decomposition of the 3D scene flow W into a rigid mo-

tion field V and a non-rigid motion field U is formulated

as W = V + U. As long as the changes in depth of the

considered point is not too large, the optical flow u can also

be decomposed:

u ≈ w + v (3)

where v is the apparent motion that moves the structure

rigidly to a virtual state, and w the motion that handles the

deformation. Hence, the face motion estimation can be also

decomposed into two steps, namely pose and shape estima-

tion.

2.2. Pose estimation problem

We define the bulk motion field ṽ as the part of the 2D motion

field u that absorbs all parts of the instantaneous 2D motion

which follows a rigid motion model in the corresponding real

3D scene. The modeled optical flow is then defined by:

ũ(Wk) � ṽk(ω, t) = JXk
[Qk(ω, t) − Xk] (4)

with Qi(ω, t) = Xk + ω × Xk + t (5)

The objective function in Eq.(2) is linear in the 3D rigid mo-

tion parameters (ω and t). Therefore the estimation problem

can be solved efficiently using the entire dense estimated op-

tical flow field. Note that, (i) the parameter m in Eq.(2) corre-

sponds to the image size, and (ii) no regularization is required

(ψ = 0) since there are only 6 parameters to be estimated.

2.3. Shape estimation problem

The part of the flow that was not taken into account by the

pose estimation, i.e. the part which was not absorbed by the

estimated bulk flow ṽ, is the nonrigid motion. As the non-

rigid flow is not directly accessible from the image measure-

ment, Eq.(3) provides it as u− ṽ. Accordingly, the Jacobian,

in Eq.(1), for the non-rigid optical flow is evaluated at Q̂k,

being the virtual point’s position after the pose estimation.

Finally, the modeled optical flow, for the non-rigid motion U
parameterized by the force parameters F̄, is then defined by

ũ(Wk) � w̃k(F̄) = JQ̂k
[U(F̄, Q̂k) − Q̂k] − v̂k (6)

with v̂k = JXk
[Q̂k − Xk]

and Q̂k = Xk + ω̂ × Xk + t̂

The nonrigid deformation estimation becomes a force es-

timation problem formulated as follows.

2.3.1. The FEM Face Model
A face model with homogeneous soft tissue skin material pa-

rameters and a 3D bended surface geometry [16] is used to

obtain an accurate motion model of the skin deformation in

the human face. We use a displacement-based FEM in which

the face muscles are modeled as external constraint forces.

The interaction of the physical muscles with the soft skin tis-

sue indeed imposes a distributed stress on the skin layer that

on its turn causes the face surface motion. For the numer-

ical determination of the displacements, FEM approximates

well the continuum equilibrium equation (between force and

displacement) as a non-linear relationship at the wire-frame

model’s node points or vertices Q̂k:

K(Q̂, Ū)Ū = F̄ ⇒ Uk = C(F̄, Q̂) (7)
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where K is a stiffness matrix dependent on the object’s mate-

rial and geometry, Ū is the tissue displacement field of the

face wire-frame vertices, F̄ is the distributed muscle force

field of the vertices; The inversion of this nonlinear system

is made by a nonlinear multivariate function C that relates

tissue displacement field Uk of the vertex Xk to F̄. More

details are to be found in [17]. This model parameterizes the

tissue displacement and its projection by a 3D force field in

Eq.(6).

2.3.2. Geometrical constraint
The 3D force field lies on a plane tangential to the model,

motivated by the muscle anatomy of a face in which muscle

fibres run approximately parallel to the skin. Equivalently, at

the vertex point Xk the force Fk is perpendicular to the model

normal nk:

ψ1 = α
m∑

k=1

‖Fk · nk‖2
(8)

where α is a penalty parameter to fine-tune the constraint.

2.3.3. Smoothness constraint
The 3D force field varies smoothly in space by imposing

Tikhonov regularization.

ψ2 = β
m∑

k=1

(
‖∇fk‖2 + ‖∇gk‖2 + ‖∇hk‖2

)
(9)

where β is a penalty parameter to fine-tune the constraint;

and the components of a force F at a vertex Xk are defined as

(fk, gk, hk) of which the variation in the spatial directions x,y
and z are suppressed, as long as the other model terms allow

this. The muscle anatomy indeed shows that every muscle has

an extend range and does not operate solely on one face sur-

face point. The surrounding tissue thus receives a weakened

stress from a nearby muscle, giving rise to a smoothing of the

muscle force field.

2.4. Numerical Implementation

For estimating the 3D facial deformations from image se-

quence, the following general algorithm is applied: (i) Ini-
tialization. Position the deformable mesh in the 3D world

(by a least-squares estimation of the camera parameter and

the model scaling) and adapts its natural features to those of

the image by a scene calibration procedure [17, 18]. (ii) Pose
estimation. Solve the linear least-squares problem, given by

Eq.(2) and Eq.(4), using as inputs the dense optical flow, yield

the rigid transform parameters ω and t. (iii) Shape estimation.
Solve the non-linear least-squares problem, given by Eq.(2),

Eq. (6) and Eq.(7), with the above defined geometrical and

smoothness constraints. Note that, at each iteration of this

least-squares problem the non-linear function C, in Eq.(7), is

evaluated by solving the mechanical displacement-based fi-

nite element problem with the current estimate of F̄ as input.

3. EXPERIMENTS

The proposed method can be validated by visualizing (render-

ing) the new position of the face model, estimated by applying

the virtual bulk motion parameters and the force parameters

in the full face motion model, using the following equation:

X̂
′
k = ω̂ × Xk + t̂ + C(F̂, Q̂) k = 1, . . . ,m

(10)

3.1. Comparison with Ground truth

Having in mind a video-phony type of application, we have

used a FEM model that is built upon a generic geometric

model, namely the Waters model [4], for which we know that

it is suitable for animation. A two frame synthetic sequence

has been created: the model has been positioned in the 3D

world and perspectively projected on the first image frame, as

shown in Figure 1a ; in second frame (Fig. 1b-grey) the right

mouth corner has been moved sidewards tangentially to the

model (obtaining a ’half-laughing’ expression) and projected.

(a) (b) (c)

Fig. 1. (a) first synthetic image frame of the Waters sequence,

(b) estimated motion (black) versus the original deformation

(grey); (c) nonrigid motion estimation residuals

Figure 1b(-black) depicts the results of the estimation

overlayed on the second frame. The visual difference be-

tween the results (black) and the ground truth (grey) is small.

The considered accuracy lies indeed somewhat in the mid-

dle between character animation and surgical simulation: we

need a natural motion tracking of the major features of the

face, but still intend to obtain semantical parameters for an-

imation. In Figure 1c the residuals of each term in Eq.(2),

and the total residual are displayed for each iteration of the

solver. The least-squares method converges: at the beginning

of the iterations the residual drops dramatically and is fol-

lowed by the flat tail in only a few iterations. Looking at the

separate residual terms (top of Fig. 1c) the geometric and the

smoothness constraint are less imposed after iteration 2. The

regularization is thus gradually reduced, which makes the

proposed nonrigid model fits better the ill-posed estimation

problem.
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(a)

(b)

(frame 0) (frame 1) (frame 2) (frame 3)

(c)

Fig. 2. Face model position on frames 0 to 3 of the Peter sequence [2], obtained by (a,c) the proposed nonrigid motion estimation

and (b) the geometric motion estimate of P. Eisert [2]

3.2. Real Face Sequence Analysis

In Figure 2 we compare the estimated natural motion parame-

ters using the proposed approach, to the results of P. Eisert [2].

The Peter sequence do not exhibit rigid motion in the exam-

ined frames, only the nonrigid mouth opening. The mouth

opening is well visible on the mesh, but by closely examining

the face input frames (Fig. 2c), we can see that the lips do not

really open as a line. In fact, our mechanical motion model

uses more parameters (namely the forces on each vertex, for

these results we refer to [17]) than the one of Eisert (who is

applying geometric mouth opening parameters). Therefore

the shape details can be better grasped by the proposed nat-

ural motion model, and the mouth gesture is followed more

precisely. The overlay of the projected estimated model on

the face images is given in Fig. 2c. The deformation of lips in

the 3D face model follow well those of the real person.

4. CONCLUSION

We proposed a novel 3D face motion estimation method

in which pose and shape are separately handled. The face

shape deformation estimation is formulated as a non-linear

least-squares optimization problem in which regularization

parameters originate from the mechanical properties of a

face. Within this approach a physically-based FEM face

model simulates the deformation of a face in a natural, re-

alistic and accurate way. By employing distributed muscle

forces as parameters of the model, the quantitative (prede-

fined) parametric description of a geometrical shape changes,

has been replaced by a qualitative semantical (natural) one.

The proposed extraction of the motion parameters provides

displacement estimates of the 3D face wire-frame model,

which accurately reproduce the gestures of the recorded per-

son. This non-rigid motion estimation of the face tissue is a

case-study to relate 3D mechanical continuum motion equa-

tions to image measurement and can be extended to deal with

other natural deformable objects.
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