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ABSTRACT

A method is introduced to track the object’s motion and estimate
its pose from multiple cameras. Firstly pose estimation from one
camera is explained. We show that pose estimation from the corre-
sponding feature points can be formed as a solution to Sylvester’s
equation. Furthermore, we develop a distributed solution, which in-
dicates that pose estimation from multiple cameras can be obtained
from the linear combination of results from each single camera. We
relay on the results from other cameras to improve the estimate of
the first one, and vice versa. Finally, the computer simulation ex-
periments demonstrate the superior performance of our algorithm in
robustness.

Index Terms— Pose Estimation, Sylvester’s Equation, La-
grange Method, Best Linear Unbiased Estimator (BLUE)

1. INTRODUCTION

Pose analysis aims to recover the object and camera poses and mo-
tion parameters from static images or video sequences. In the lit-
erature, the study of the orientation problem is mainly focused on
investigation of the uniqueness or the number of solutions. In [1], a
family of linear algorithms has been developed to provide a unique
solution for the 4-point, 5-point and n-point camera pose estimation
problem. Specially, the camera exterior orientation estimation prob-
lem is often referred to as the perspective-n-point (PnP) problem.

We rely on the feature-based approach in this paper, and directly
estimate the 3D pose from 2D image sequences. Scale-Invariant
Feature Transform (SIFT) [2] is used to extract corresponding fea-
ture points from image sequences. The pose estimation from cor-
responding points based on Singular Value Decomposition (SVD)
techniques have been well established [3]. We will show that the
pose estimation problem can be formed as a solution to Sylvester’s
equation, which can be solved with many methods, such as Kro-
necker Product approach [4]. We show that the proposed approach
to the solution of Sylvester’s equation is equivalent to the classical
SVD method for 3D-3D pose estimation. However, whereas clas-
sical SVD cannot be used for 2D-2D pose estimation, our method
based on Sylvester’s equation provides a new approach to pose esti-
mation from 2D image sequences.

In the multi-view case, Luong and Faugeras [5] show that the
epipolar geometry can be summarized in one Fundamental matrix.
Rother and Carlsson [6], based on a reference plane, develop a linear
algorithm for computation of 3D points and camera positions from
multiple perspective views by finding the null-space of a matrix built
from image data using SVD. Fermuller and Aloimonos [7] show the
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ambiguities for motion estimation from one camera because of the
limited field of view. In [8], a system, consisting of six cameras, is
built to remove the inherent ambiguities of confusion between trans-
lation and rotation. However, this system does not use one pose
estimation for all information from all cameras simultaneously [9].
Frahm et al. [9] combine all information of all cameras to estimate
the pose of a multi-camera system. In contrast, we are estimating
the object’s pose, and by using all information from all cameras to
give one pose estimate, we also research the relationship between
this estimate with those from each camera separately. In our system,
cameras can be arbitrarily placed, and we assume that they are fixed,
and the orientations and translations between each other are known.

The rest of this paper is organized as follows: Section 2 illus-
trates the method of pose estimation based on Sylvester’s equation
from one view. It is extended to multiple views in Section 3. In
Section 4, experimental results show the efficiency of our algorithm.
Finally, in Section 5, we present a brief summary.

2. POSE ESTIMATION FROM ONE CAMERA

With the solution to Sylvester’s Equation, we can obtain the pose
change between two successive frames in a video sequences. The
current pose is computed by accumulating all of the past results.
We are assuming that the pose in the first frame is known. In the
following, we only focus the motion between two sequential images.

2.1. Projection from 3D to 2D

For a point in the 3D real object, its positions before and after motion
have the relationship as follows.⎛
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where R3×3 is a 3 × 3 rotation matrix, and T is a 3 × 1 translation
matrix. j, (j = 1, 2, . . .) represents the jth feature point. With the
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where T ′ = T ·f/zj
2

is the 3×1 translation matrix within the image.

Here we assume zj
1
/zj

2
= 1. Because of the short interval between

10851-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



two video images (less than 1/24 second), the motion in this period
will be small enough correspondingly. A similar model, the weak
projective camera model [10], is used in the 2D-3D case. Moreover,
if only the first two rows of Eq. 2 are considered, we get(
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) (
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)
+

(
lx
ly

)
(3)

where lx = r13f+t′x and ly = r23f+t′y. Our problem is to estimate
the rotation matrix and translation vector with this equation.

2.2. Lagrange Method

For all of the matched points from SIFT, if we take Least-Square
Error with respect to the rotation and translation variables, the 2D-
2D pose estimation problem is concluded as

min (U2 − R1P1 − Lx)(U2 − R1P1 − Lx)T

+ (V2 − R2P1 − Ly)(V2 − R2P1 − Ly)T
(4)
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. We can apply Lagrange method to solve the

constrained optimization problem.

F = (U2 − R1P1 − Lx)(U2 − R1P1 − Lx)T
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where λ1, λ2 and λ3 are Lagrange multipliers. Then the partial
derivatives of F are taken, for the rotation coefficients and trans-
lation coefficients respectively.{
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Since there is only one translation coefficient for all the feature
points in a frame, we can take the same method as in [3], and L
is quickly determined from Eq. 6, once the rotation parameters are
known. (
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the feature points in the image coordinates from the two sequential
images, and M is the number of feature points.
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Eq. 6 can be simplified as{
−U ′
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1 + R1A + λ1R1 + λ3R2 = 0
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which can be further combined in one matrix equation.

−B + R2×2A + ΛR2×2 = 0 (9)

where Λ =

(
λ1 λ3

λ3 λ2

)
. Eq. 9 is Sylvester’s equation, which is

also called Lyapunov’s Equation in the special case with Λ = AT .
As shown in [3], they also obtain the same equation as Eq. 9 in the
3D-3D case, and solve it with SVD method. However, in our 2D-
2D case, the orthonormality constraints have been changed in the

deduction, R2×2R
T
2×2 =

(
1 − r2

13 −r13r23

−r13r23 1 − r2

23

)
, which is an

arbitrary matrix, and SVD approaches cannot be applied. But it can
be computed with the Kronecker Product method [4] or numerical
calculations.

From the solution R̃2×2, we can finally extract (rx, ry, rz)
T ,

which are the three angles around x, y and z axis respectively, with
Euler’s rotation theorem.

3. POSE ESTIMATION FROM MULTIPLE CAMERAS

For simplicity, we will restrict our discussion in this paper to only
two views. However, the ideas presented here can be easily extended
to multiple views.

3.1. Transformation Between Two Cameras

We firstly suppose that all the cameras could capture the same fea-
ture points in the object, but our conclusion is independent of this
assumption. Assume we have the following relations

{
Ql
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l
1 + T l
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l
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1 = Ro
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l
1 + T o

3×1

(11)

where Q represents the 3D points. The subscript 1 or 2 displays
the coordinates before or after movement, and the superscript l or r
stands for left camera or right camera. Therefore Ql

1 are the points
in the coordinate system with respect to the left camera, and Qr

1 are
the same points but measured by the right camera. 3 × 3 and 3 × 1
point out the dimensions of matrices. Ro

3×3 and T o
3×1 are rotation

and translation between two cameras, and both are known. From Eq.
10 and Eq. 11, we can obtain
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r
1 + T r

3×1

= Rr
3×3R

o
3×3Q

l
1 + Rr

3×3T
o
3×1 + T r

3×1

= Ro
3×3Q

l
2 + T o

3×1

= Ro
3×3R

l
3×3Q

l
1 + Ro

3×3T
l
3×1 + T o

3×1 (12)
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Because Ql
1 is arbitrary, for the rotation matrix, we have
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3×3R
l
3×3(R
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T (13)
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And for the translation matrix, we get
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o
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With the weak projective camera model, we know T ′

3×1 = T3×1 ·
f/z2, where T ′ is the translation in the images plane. Accordingly,
the 3D translation with Eq. 15 can be represented with 2D translation
as

T
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.

Once the focus length fr and f l are known, (t
′r
x , t

′r
y ) and (t

′l
x , t

′l
y )

can be obtained with the same method in Section 2. Moveover, we
can get zr

2 and zl
2 from Eq. 16, and the 3D translation for each

camera can be computed with T ′

3×1 = T3×1 · f/z2.

3.2. Pose Estimation from Two Cameras

We will take the same approach as in Section 2.2, but for a clearer
explanation, we assume that the translation vectors have been prop-
erly compensated.

Firstly, let us define Ro =

(
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tually the top-left four elements of Ro
3×3, Rl
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3×3 . Denote
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1 are points minus their mean in images, also the
same as before. Then the pose estimation problem could be con-
cluded as
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Eq. 18 and Eq. 19 are constrains for left and right camera separately.

The Lagrange Method is applied to solve the constrained opti-
mization problem.

min FM = F l + F r
(20)

where the superscripts l and r are used to distinguish two views,
and F is defined in Eq. 5, except that the translations have been
compensated. Define Al = P l

1P
lT
1 , Bl = P l

2P
lT
1 , Ar = P r

1 P rT
1

and Br = P r
2 P rT

1 .

3.3. Centralized Solution

Replace Rr in Eq. 20 with Rr = RoRl(Ro)T + H , where

H = RoRl(Ro)T +

(
ro
13

ro
23

) (
rl
31 rl
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)
(Ro)T

+

(
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11r

l
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l
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l
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l
23 + ro
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l
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) (
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, which is ob-

tained from Eq. 13, and compute the partial differential.

∂FM

∂Rl
= −Bl + RlAl + ΛlRl + RoT [−Br

+(RoRlRoT + H)Ar + λr(RoRlRoT + H)]Ro

= [−Bl + RlAl + ΛlRl]

+RoT [−Br + RrAr + λrRr]Ro

= 0 (21)

Once Eq. 21 is solved, the object’s pose in the left camera co-
ordinate system is obtained, with the information from both left and
right cameras.

3.4. Separate Solution

The partial differential of Eq. 20 is calculated.

∂FM

∂Rl
= −Bl + RlAl + ΛlRl = 0 (22)

∂FM

∂Rr
= −Br + RrAr + ΛrRr = 0 (23)

where Λl =

(
λl

1 λl
3

λl
3 λl

2

)
and Λr =

(
λr

1 λr
3

λr
3 λr

2

)
. Thus, for a

multiple camera system, we can use a solution to Sylvester’s equa-
tion to estimate pose for each camera, just as the single camera case.

We can prove that, if R̂l is a solution for Eq. 22, the constructed

R̃r = RoR̂lRoT + H is a solution for Eq. 23. Similarly, if R̂r

is a solution for Eq. (23), then R̂r
3×3 can be obtained from R̂r. We

can also prove that (Ro
3×2)

T R̂r
3×3R

o
3×2 is a solution for Eq. (22),

where Ro
3×2 is the first two columns of Ro

3×3. Hence both R̂l and

(Ro
3×2)

T R̂r
3×3R

o
3×2 are solutions for Eq. (21), and we will find the

best linear unbiased estimate from these two results in Section 3.5.
As a result, we can use the estimates of other views to compute

the pose with regard to the first camera, even to a virtual camera.
The problem of pose estimation from multiple views can be solved
with the independent pose estimate from each individual view. The
equation obtained for one camera is analogous to that of other cam-
eras.

3.5. Best Linear Unbiased Estimator

Let us firstly rewrite the matrices R̂l and (Ro
3×2)

T R̂r
3×3R

o
3×2 into

the vector form s1 and s2, and both of them are 4×1 vectors. Consid-
ering a general case, there are solutions si, i = 1, . . . , N , therefore
we have

s = I · strue + v (24)

where S =
[

s1 s2 . . . sN

]T
is a 4N × 1 vector. I =[

I4×4 I4×4 . . . I4×4

]T
is a 4N × 4 matrix, and I4×4 is

a 4× 4 identity matrix. v is a 4N × 1 noise vector. strue is the 4× 1
vector, denoting the ground truth. Now we will find the Best Linear
Unbiased Estimator (BLUE) s̃ of strue with si.

Define C is the 4N×4N covariance matrix of v, and assume the
cameras are independent of each other. Correspondingly, C is of the
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Fig. 1. Pose estimation results of the synthetic data.

form

⎡
⎢⎢⎢⎣

C1 0 . . . 0
0 C2 . . . 0
...

...
. . .

...
0 0 . . . CN

⎤
⎥⎥⎥⎦ where 0 is the 4 × 4 zero matrix,

and Ci, i = 1, . . . , N is the 4×4 covariance matrix for each camera.
Then BLUE is

s̃ = (IT C−1I)−1IT C−1s = (
N∑

i=1

C−1

i )−1

N∑
i=1

C−1

i si (25)

which provides the optimal fusion of the distributed solution. If the
covariance matrix of the noise for each camera is identical, i.e. Ci =
C, for i = 1, 2, ..., N , then the BLUE estimate is given by

s̃ =
1

N

N∑
i=1

si (26)

4. EXPERIMENTAL RESULTS

We demonstrate the noise robustness of our algorithm with synthetic
points, and the results are shown in Fig. 1, where (a) is especially
for one-view case, and (b), (c) for multi-view case. Here we use 20
points and run 200 times.

In Fig. 1(a), we compare our Sylvester’s Equation Algorithm
(SEA) with the Least-Squares Method (LSM). The LSM is a method
without considering the orthogonality constrains of a rotation matrix,
and it deviates greatly as a high noise level presents. In Fig. 1(b),
pose estimates from another two views, Ro = 45(degrees) and
Ro = 90(degrees), are projected to the reference coordinate sys-
tem, and no obvious difference is found with various views. Es-
pecially, no optimal viewpoint is found to give better results in our
experiments. In Fig. 1(c), we fix SNR= 20dB for the feature points
in the first view, and decrease the SNR in the other view (Ro =
90(degrees)) from 20dB to 0dB. BLUE has larger errors than the
red curve, and it seems better to directly use the estimates from the
first camera. But in real applications, we usually cannot distinguish
which camera is better, and it will also change with time and the rel-
ative positions to the object. BLUE can improve the overall estimate
from all observation of all cameras. More cameras generally mean
more computation load. However, the increase in computation load
is linear in our system.

5. CONCLUSION

This paper focuses on 3D pose estimation from multiple views. We
use a solution to Sylvester’s equation to estimate pose for each cam-
era, and obtain a distributed solution which is fast and accurate. The
best linear unbiased pose estimation is found to improve the results
from one camera or estimate pose from a virtual camera.
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