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ABSTRACT 

In this paper we propose a framework of factorization-based 
non-rigid shape modeling and tracking in stereo-motion. We 
construct a measurement matrix with the stereo-motion data 
captured from a stereo-rig. Organized in a particular way this 
matrix could be decomposed by Singular Value Decomposition 
(SVD) into the 3D basis shapes, their configuration weights, 
rigid motion and camera geometry. Accordingly, the stereo 
correspondences can be inferred from motion correspondences 
only requiring that a minimum of 3K point stereo 
correspondences (where K is the dimension of shape basis space) 
are created in advance. Basically this framework still keeps the 
property of rank constraints, meanwhile it owns other advantages 
such as simpler correspondence and accurate reconstruction even 
with short image sequences. Results with real data are given to 
demonstrate its performance. 

Index Terms— Visual Tracking, Stereo Vision

1. INTRODUCTION 

Tracking the object and recovering its 3D shape from sequences 
of images are fundamental problems in computer vision 
community. They have various applications such as scene 
modeling, robot navigation, object recognition and virtualized 
reality [1, 2, 6, 9]. Traditionally there exist two vision-based 
methods for 3-D reconstruction: visual motion and stereo vision. 
Both methods depend on how to solve the notorious 
correspondence problem. Basically this problem is relatively 
easy to handle in visual motion [12] because the extracted 
features have strong temporal association even without any prior 
knowledge of the dynamic model. Comparatively, stereo vision 
undergoes a much easier reconstruction task by triangulation, but 
the stereo correspondence task is severely ill-posed though we 
have the epipolar constraints. 
  In visual motion, Tomasi and Kanade [12] proposed one of the 
most influential approaches as the factorization method for rigid
objects and orthographic projection. The key idea is 
decomposition of a measurement matrix into its shape and 
motion components. Various extensions have been put forward 
[7-8, 14]. Stemming from the rigid factorization method, a non-
rigid factorization method was first proposed by Bregler et. al 
[13]. In the case of non-rigid factorization, the 3D shape is 
represented by a linear combination of basic modes of 
deformation. Brand proposed a flexible factorization approach 
which minimizes the deformations relative to the mean shape by 
introducing an optimal correction matrix [1]. Recently Xiao et.al 
proposed a new set of constraints on the shape basis in [15] and 
gave a close-form solution to non-rigid structure from motion. 
   Researchers have tackled this topic of augmenting “structure 
from motion” with stereo information. Some works are feature-

based [4, 6], while others are called the “direct” method using 
the spatial and temporal image gradient information [10]. The 
notable problem is how to fully utilize the redundant information 
in the stereo-motion analysis, but practically the more important 
issue would be how to make the two basic cues complement with 
each other. Recently there are some stereo-motion papers taking 
into account non-rigid motion [2, 9, 3]. A basic primitive called 
dynamic-surfel which encodes the instantaneous local shape, 
reflectance and motion of a small region in the scene, is proposed 
in [2] to build the scene’s structure in space-time from multiple 
views. Likewise, the object is modeled by a time-varying multi-
resolution subdivision surface in [9], which is fitted to the image 
data from multiple views. It can be figured both methods above 
have to solve really complicated optimization problems. Only 
Del Bue et. al addressed non-rigid stereo motion by a 
factorization method [3], nevertheless stereo correspondence is 
assumed to be created and its focus was on shape recovery only.  
   In this paper, we will discuss 3D non-rigid shape recovery and 
tracking based on factorization. Our motivations come from the 
work in [5, 13]. Performing singular value decomposition (SVD) 
on the well-organized stereo-motion measurement matrix, we 
could factorize it into 3D basis shapes, their configuration 
weights, stereo geometry and rigid motion parameters. 
Moreover, we infer stereo correspondences from motion 
correspondences only requiring that at least 3K point stereo 
correspondences (where K is the dimension of shape basis space) 
are created initially. Basically this framework still owns the 
property of rank constraints [13]. It is an extension of [5]’s work 
to non-rigid objects, so such advantages as simpler 
correspondence and accurate reconstruction even with short 
sequences are preserved. 
   Sect. 2.1 reviews the factorization work for the non-rigid 
motion model in [13]. Our work as an extension to stereo-motion 
is described in Sect. 2.2. In Sect. 2.3 we discuss how to infer 
stereo correspondences. Sect. 3 provides our experiment results 
of real sequences. 

2. STEREO-MOTION FACTORIZATION 

2.1 Non-rigid Motion Model 
The shape of the non-rigid object is described [13] as a key-
frame basis set 1S , 2S ,  …, KS . Each key-frame iS  is a 3xP
matrix describing P points. The shape of a specific configuration 

tS at the time frame t is a linear combination of the basis set: 
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   Assume a weak-perspective model (scaled orthographic model) 
for the camera projection process. The 2D image points 
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),( ,, itit vu  are related to 3D points of a configuration tS  at a 
specific time frame t by 
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where tR'  (2x3) contains the first two rows of  the full 3-D rigid 

rotation matrix tR , and tT '  is the 2-D rigid translational vector 
(it consists of the first two components of the 3-D translation 
vector tT ). The weak perspective scaling has been implicitly 

coded in Ktt ll ,1, ',...' . Actually we can eliminate tT '  by 
subtracting the mean of all 2D image points, and then can 
assume that tS  is centered at the origin. We can rewrite the 
linear combination in (2) as a matrix multiplication: 
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    Stacking all point tracks over the whole sequence into a large 
measurement matrix W, we can write 
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   Here the 2Nx3K matrix Q’ contains for each time frame t the 
pose tR'  and configuration weights Ktt ll ,1, ',...' , and the 3KxP 

matrix B codes the K key-frame basis shapes iS . In the noise free 
case, rank of W is r ≤  3K. This factorization can be realized 

using SVD, i. e. BQVUW T ˆ'ˆ ⋅== , only considering the 
first r singular values and singular vectors. 
  The next step is to extract the pose tR'  and shape basis weights 

Ktt ll ,1, ',...'  from the matrix 'Q̂ . For each tQ'ˆ  in 'Q̂ , it can be 
written as (for convenience, the time index is dropped) [13] 
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The elements of tQ'ˆ  can be reordered into a new matrix: 
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which shows that tQ'ˆ is rank of 1 and also can be factored by 
SVD. Because this factorization is not unique, there exists one 
invertible matrix G that ortho-normalizes all of the sub-blocks 

tQ'ˆ . Thus it leads to an alternative factorization: 

GQQ ⋅= 'ˆ' ,     BGB ˆ1 ⋅= − .                        (7) 
   Irani exploited rank constraints in [7] for optic flow estimation 
in the case of rigid motion. Building on this technique, a 
framework of robust tracking could be set up (details are in [13]).  

2.2 Stereo-Motion Model 
Below we also utilize the rank constraints to help stereo 
correspondence. Let ),( TR  be the rotational and translational 
relationships between the stereo cameras. Under a scaled 
orthographic camera model we can also assume the shape has 
been centered at the origin. Therefore the translation T could be 
subtracted from the shape relationship, since a translation part in 
depth has only effect on the scale factor and a translation part in 
the image plane is eliminated. So the 3D coordinates of any point 
with respect to the two camera coordinate frames, lS  and rS , 

and the corresponding shape basis, ilS ,  and irS ,  (i = 1, 2,…, K), 
are related by 

lr SRS ⋅= , ilir SRS ,, ⋅= ,  i = 1, 2,…, K.          (8) 
   Now we rewrite (4) as 
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where tF  is the 2x3 scaled orthographic projection matrix given 
by 

=
010
001

tt sF ,                           (10) 

with ts as the scale factor at time frame t.  
   Applying the non-rigid motion model to the two cameras 
separately, one obtains two image measurement matrices 
respectively as 

llll BQFW = , rrrr BQFW = .                 (11) 
  Because the shape is centered at the origin, we can omit the 
translation component in the relationship between two rigid 
motion representations for two camera coordinate frames and 
only consider the relationship of rotation components as 

tltr RRRR ,, =  (Some derivations are given in our technical 
report*) .  Consequently, we write 
                                                
* http://www.ifp.uiuc.edu/~yuhuang/Factorization03.pdf
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where rF ' actually has coded the scaling change of rF due to 

translationT , and the 3Nx3N matrix E~  is given as 

=
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~

RE .                              (13) 

   Equation (12) represents the matrix decomposition of the 
stereo-motion correspondences into 3D structure lB , the rigid 

motion and shape basis weights lQ , the stereo geometry E  and 

the camera parameters H .  It is obvious, like lW  and rW , Ψ is 
of rank at most 3K: rank ( Ψ ) ≤  3K. Below based on this rank 
property, we can infer stereo matching from motion 
correspondences.  

2.3 Stereo Matching Inference  
Assume distinct feature points are extracted from the stereo 
image sequences, and in each sequence they are tracked 
separately using the motion correspondence method. Now the 
stereo correspondences are not established yet while the 
estimated dense motion correspondences are assumed to be 
mostly correct. With such motion correspondences, the 
measurement matrixes ∗

lW  and ∗
rW can be constructed, here 

different from lW  and rW , their columns have not been 
properly ordered. As Ψ is of rank at most 3K, a basis of the 3K-
dimensional subspace could be set up as long as a minimum of 
3K linearly independent columns of Ψ are available. Then all the 
other columns of Ψ are inferred from the set of basis. 
  Suppose k matches are obtained by some stereo correspondence 
technique with epipolar constraints (To simplify 1D searching on 
the epipolar line, the technique of image rectification could be 
done prior to stereo matching), where k ≥  3K. The 
corresponding columns of ∗

lW  and ∗
rW can be stacked into a 

4Nxk sub-matrix kΨ . SVD of kΨ  is T
kkkk VU=Ψ . 

Actually the first 3K’ columns of kU  construct the optimal basis 
of 3K’-dimensional vector subspace (Note K’ is the estimated 
number of shape basis, which maybe is not equal to the true 
number K.). Let '321 ,...,, Kaaa be the extracted basis vectors of 
the column space of Ψ and let a 4Nx3K’
matrix ],...,,[ '321 KaaaA = , so a column v of Ψ is only a 
linear combination of the columns of A. Let two 2Nx3K’
matrixes lA  and rA be the top-half and the bottom-half sub-

matrixes of A respectively such that the columns of lA  belong 

to ∗
lW  and the columns of rA  to ∗

rW . For a column lv  of 
∗

lW  its stereo correspondence rv  in ∗
rW  can be predicted from 

lA  and rA  as: 

llrr vAAv )( +=                               (14) 

where +
lA  is the pseudo-inverse of lA and is given by  

T
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T
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    But the predicted result may not be exact due to noise. A 
measure for feature matching could be count on: normally we 
calculate the least-mean-squares-error (LMSE) in all the 
positions over the entire image sequence with reference to the 
prediction results; However, even this measure is small enough, 
we can not guarantee it is a correct pair of stereo matching; An 
additional measure related to windowed template matching is 
probably taken into account, i.e. the average normalized 
correlation must be high enough [5]. If not, the image feature is 
ignored. Finally all the inferred stereo correspondences are 
grouped together to re-estimate the basis A, which is supposed to 
be more accurate. This process could be iterated till convergence. 
   However, we still reconstruct 3D deformable shape via 
triangulation from views of the calibrated stereo cameras once all 
the stereo correspondences are obtained [6]. Consequently we 
can calculate by factorization the 3D shape basis from the 
measurement matrix of 3D point positions, similar to (5) and (9), 
then extract the pose parameters and shape basis configuration 
weights by rank-1constraints. Different from (5), this time we 
can extract all nine components of the rotation matrix rather than 
only the top two rows. Recovering the pose tR  and original 

configuration weights Ktt ll ,1, ,...  actually has realized 3-D non-
rigid tracking.  

3. EXPERIMENTAL RESULTS 

Because of limitation in space, only results with real data are 
given here. In the experimental setup the two digital video 
cameras are mounted vertically and connected to a PC through 
1394 links. The human face recordings in the collected videos 
are captured with resolution 320x240 at 30 frames per second. 
They contain rigid head motions, and non-rigid 
eye/eyebrow/mouth facial motions. 
   It is difficult to estimate optical flow from facial motions using 
traditional gradient-based or template matching methods because 
the facial surface is smooth and its motion is non-rigid. We 
choose to use a Bazier Volume model-based face tracker to 
obtain the optical flow around the face area [11].  For each 
camera, we track the facial motion using independent face 
trackers with a dense 3D geometrical mesh model. The first 
experiment we did is to reconstruct the facial structure from rigid 
facial motions. In the videos, the human head moves up and 
backward within 30 frames. A pair of stereo images with 
depicted tracking points is shown in Fig. 1. 
    As the face trackers are applied independently to the video 
sequences of the two cameras. We don’t know whether there is 
correspondence between the mesh points of the face models used 
by the two face trackers, except those points at the eye corners 
and mouth corners.  We identify these points as distinct feature 
points (shown in red) and the correspondences of the rest points 
are inferred using the bases factorized from the optical flow 
vectors of these distinct feature points. In the rigid motion case, 
we take the number of bases K=3. Fig. 2 shows the found 
correspondences of optical flows estimated from the two face 
trackers. The red trajectories are the mapping of the optical flow 
of the mesh points from upper camera view to lower camera 
view using equation (14). The green trajectories show the found 
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correspondent trajectory of mesh points from video of lower 
camera.  After the correspondence is established, the 3D face 
geometrical structure in each time instant can be reconstructed. 
Fig. 3 shows the reconstructed mesh points in the 3D space. 

   
(a) Upper camera                          (b) Lower camera 

Fig. 1. Tracking result for rigid motion        

            
 Fig. 2. Optical flow trajectories     Fig. 3. Reconstructed points 
  In order to verify our theories with non-rigid motion, we further 
identified a stereo video sequences in which the subject opens 
mouth within 8 frames. As shown in Fig. 4, the distinct facial 
features (depicted in red) are the eye corners, mouth corners, 
nostrils, and the center of the upper and lower lip. As the non-
rigid motion only contains the opening mouth, we take K=6 in 
this case. The found correspondences of optical flow trajectories 
are shown in Fig. 5. It is shown that most of the found 
correspondences of the optical flow trajectories are caused by the 
opening mouth. The reconstructed 3D face geometric structure is 
shown in Fig. 6, where the purple dots are the reconstructed 3D 
points.  

  
(a) Upper camera                         (b) Lower camera  

Fig. 4. Tracking results for non-rigid motion.

  
  Fig. 5. Optical flow trajectories     Fig. 6. Reconstructed face. 

4. CONCLUSIONS AND FUTURE WORK 

We have presented a framework for recovering 3D non-rigid 
shape and motion viewed from calibrated stereo cameras. This 
approach is a factorization-based method, so it naturally has the 
property of rank constraints. Meanwhile it gives a mechanism of 
inferring stereo correspondences from motion correspondences 
only requiring that a minimum of 3K point stereo 
correspondences are created initially. The combination of motion 
and stereo cues offers such advantages as simpler stereo 
correspondence and accurate reconstruction even with short 
sequences. Experimental results from real stereo sequences are 
also given to demonstrate the performance of the proposed 
method. Future work will address how to detect not a few 
outliers for “robust” factorization and how to realize 3D model-
based tracking along with model refinement. 
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