
FAST BLOCK SIZE PREDICTION FOR MPEG-2 TO H.264/AVC TRANSCODING

Qiang Tang, Panos Nasiopoulos, Rabab Ward

Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada

ABSTRACT

One objective in MPEG-2 to H.264 transcoding is to
improve the H.264 compression ratio by using more
accurate H.264 motion vectors. Motion re-estimation is by
far the most time consuming process in video transcoding,
and improving the searching speed is a challenging problem.
We introduce a new transcoding scheme that uses the
MPEG-2 DCT coefficients to predict the block size
partitioning for H.264. Performance evaluations have shown
that, for the same rate–distortion performance, our proposed
scheme achieves an impressive reduction in the
computational complexity of more than 82% compared to
the full range motion estimation used by H.264.

Index Terms—MPEG-2, H.264, Transcoding, Block
Size

1. INTRODUCTION

Video coding standards have been constantly evolving
during the last two decades. MPEG-2 is presently the
dominant video coding standard in DTV broadcasting and
DVD applications [1]. However, H.264 is quickly gaining
ground mainly due to its higher compression efficiency [2].
Since the two standards are destined to coexist for some time,
providing universal media access between them is becoming
a hot research area. Transcoding from one standard to the
other is the most cost effective and most attractive way to
achieve such universal media access [3].

Since H.264 provides better compression performance
than MPEG-2, one objective of MPEG-2 to H.264
transcoding is to improve the compression ratio of the
resulting H.264 video. This may be achieved by taking
advantage of some of the new features introduced by the
H.264 standard such as variable block-size motion
estimation (VBSME), multiple reference pictures in motion
estimation (ME), and the ME quarter pixel accuracy. These
features manage to significantly improve compression
performance by providing more accurate motion vectors for
the inter-frame prediction stage. Thus, one type of MPEG-2
to H.264 transcoding is to take advantage of the existing
MPEG-2 video coding information in order to efficiently
choose the coding parameters for H.264. Such research
efforts have been presented in [4]-[7]. In all these cases,

however, the number of calculations involved in finding the
best match is relatively high. In [4]-[5], for instance, once a
threshold is reached, a large amount of calculations is
needed during the H.264 encoding process. In [6], machine
learning techniques are used to predict 16x16 and 8x8
modes by calculating the mean and variance for all the 16
(4x4) blocks within each (16x16) MB. In addition to the
above, the proposed schemes in [4]-[6] use information in
the pixel domain, a disadvantage since spatial correlations
between pixels is very high. This problem is addressed in [7]
which uses information based on DCT coefficients to
accelerate the macroblock mode selection.

We propose an efficient MPEG-2 to H.264 transcoding
scheme which predicts the block size partition in H.264
using the MPEG-2 DCT coefficients. However, instead of
using all 64 coefficients within each 8x8 block as in [7], we
only use the first 3 AC low-frequency coefficients of each
8x8 block. Our method predicts the block size partition to be
used in H.264 from the set {16x16, 16x8, 8x16, 8x8}
directly without the use of full-search. Experimental results
show that the proposed algorithm yields a rate-distortion
performance that is almost the same as that resulting from
the exhaustive full search. At the same time, the
computational complexity is significantly reduced,, requiring
less than 18% of the calculations used by the exhaustive full
search method.

2. PROBLEM DESCRIPTION

In video coding, motion estimation is the process that
searches for the block in the reference frame that best
matches the current block. After the best match is found, the
current block is subtracted from the best match and the
difference is coded. In MPEG-2, motion estimation (ME) is
implemented using only 16x16 pixel block size. On the other
hand, H.264 performs motion estimation for a variety of
block sizes which, in addition to 16x16, includes 16x8, 8x16,
8x8, 8x4, 4x8 and 4x4 blocks (see Fig. 1). It has been shown
that this H.264 feature yields optimized motion vectors with
better matching accuracy which results in higher
compression performance [8]. In general, MPEG-2 to H.264
transcoding schemes which re-use the MPEG-2 motion
vectors result in high computational efficiency, but their
matching accuracy is well below what could be achieved by
H.264. In transcoding applications with emphasis on

10291-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

improving the bit-rate, the main objective is to efficiently
determine more accurate motion vectors, and take advantage
of H.264’s new motion estimation features. To this end, the
following problem has to be addressed: how to efficiently
determine the block sizes that will be chosen by the H.264
encoding process.

3. PROPOSED MB MODES PREDICTION
ALGORITHMS

Addressing the problems described above, we designed a
transcoding scheme that 1) limits the range of the available
block sizes in the H.264 encoding process, and 2)
predetermines the sizes of the blocks H.264 would use for
every 16x16 MB that is not intra-frame coded in MPEG-2,
without engaging any best match searching. An efficient
method that exploits the relationship between the MPEG-2
DCT coefficients and the H.264 block size partitions is
proposed.

3.1. Choosing only 16x16, 16x8, 8x16 and 8x8 block sizes

All the presently available MPEG-2 to H.264 transcoding
schemes search the entire range of block sizes (i.e., 16x16,
16x8, 8x16, 8x8, 8x4, 4x8 and 4x4). This approach is
counterproductive since one of our main objectives in
designing an efficient transcoding scheme is to reduce the
computational complexity of the overall system. It is thus
desirable to limit the amount of the search effort but without
sacrificing the compression ratio. For this reason, we
compressed a large number of previously coded MPEG-2
video streams using H.264 to determine how different block
sizes affect the compression performance. Our tests showed
that block sizes below 8x8 resulted in negligible
compression improvements which by no means justified the
extra computational complexity involved. The main reason
behind this founding is the fact that the MPEG-2 video
streams had already gone through a quantization process
which removed a significant amount of video details.
Combining this finding with the fact that block sizes smaller
than 8x8 need many more bits for storing the corresponding
motion vectors, the overall cost savings for using these
blocks becomes insignificant. Based on these observations,

we choose to consider only the 16x16, 16x8, 8x16, and 8x8
block sizes for our proposed transcoding scheme. The more
detailed experimental results are shown below.

For video test sequences, three picture resolutions we
chose: 2 sequences in QCIF (176x144), 10 sequences in CIF
(352x288), 2 sequences in SDTV (720x576). The bit-rates
of MPEG-2 video streams for these three resolutions are 1M,
2M and 6M bits/sec, respectively. The MPEG-2 video
streams were decoded back into the pixel domain and re-
encoded using H.264. Fig. 2 shows the rate-distortion when
all the block sizes (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4)
are used and also when only {16x16, 16x8, 8x16, 8x8} are
employed. Only four video sequences are shown in Fig. 2 (1
SDTV, 2 CIF, 1 QCIF sequences). We observe that the
difference between the R-D performances resulting from the
partial range search and those from the full range search is
negligible. Based on this observation, in our proposed
transcoding coding scheme, we consider only the 16x16,
16x8, 8x16 and 8x8 block size partitions.

3.2. Proposed block size prediction

In MPEG-2 to H.264 transcoding, to accelerate the H.264
block size partition selection, we propose to use the
information contained in the DCT coefficients of the residue
picture resulting from the MPEG-2 motion compensation
process. The residue picture is formed from the difference
between the original picture and the reference one during the
motion compensation process. Referring to Fig. 3, the left
picture is the residue picture after MPEG-2 motion
compensation, and the right one is the corresponding
MPEG-2 encoded-decoded picture. The grid on Fig. 3(a)
shows the block size partition chosen by H.264.

Fig. 3(a) clearly shows the correlation between the
H.264 block sizes and motion activity. Whenever the 16x16
MB residues resulting from the MPEG-2 motion
compensation are large, the H.264 block sizes are smaller
than 16x16 since the MPEG-2 16x16 block size motion
compensation did not yield good performance. Thus, to
determine whether a 16x16 MB should be encoded as 16x16

0

16

16

8

8

16

0

1

16

8 8 8 8

8

8

1

0 1

2 3

8

4

4
8

4 4 4 4

4

4

0

1
0

0
1

1

2 3

0

Fig. 1 Variable Block Sizes in H.264 Motion Compensation

R-D distortion curves

26

28

30

32

34

36

38

40

42

0 1000 2000 3000 4000 5000 6000
Bit-rate (kBits)

P
S

N
R

 (
d

B
)

Foreman_qcif

Foreman_cif

Football_cif f1car_SDTV

 no 8x4,4x8, 4x4
 all 7 block sizes

Fig. 2 Rate-Distortion curves of full range search and partial range
search

1030

MB in H.264, the energy of the MPEG-2 motion
compensated MB residues could be used. The following
proposed method determines how such a MB should be
partitioned using the information carried in already
calculated MPEG-2 DCT coefficients.

 Let Xij denotes a pixel inside an 8x8 block (0 i 7; 0
 j 7), and Fmn denotes the DCT coefficients of the

corresponding 8x8 block (0 m 7; 0 n 7). Then Fmn is
expressed as:

)0,(
2

1
),0,(

8

1

16

)12(
cos

16

)12(
cos

7

0

7

0

>=====

++
=

= =

nmCCnmCC

minj
XCCF

nmnm

i j
ijnmmn

ππ

 (1)

The basis patterns of F01, F10 and F11 are shown in Fig. 4.

Fig. 4 The basis patterns of the first 3 low frequency AC
coefficients

Our proposed algorithm is composed of two steps. The
first step uses the energy of DCT coefficients in the current
MB to estimate whether or not this MB should be
partitioned. If the 16x16 MB is to be partitioned, we then
find the directions of the different motions inside that block.
If there are two different motion directions inside the block,
the edge separating the pixels belonging to different motion
directions will result in large DCT coefficients. Referring to
Fig. 4, the directions of motion boundaries can be found
from the edge information of the AC coefficients in each
8x8 block. Based on the directions of motion boundaries, we
further estimate which block size partition among {16x8,
8x16, 8x8} to use in H.264. To determine which
combination of DCT coefficients indicates the directions of
motion boundaries inside a block, we implemented a large
amount of experiments using different sub-sets of the DCT
coefficients, such as middle-frequency coefficients or the
first 6 AC low frequency coefficients. These performance

evaluations have shown that using the first 3 AC low
frequency coefficients offers the best trade-off between bit-
rate performance and computational complexity.

 Therefore, our proposed algorithms are based on the
values of F01, F10 and F11 in each 8x8 MPEG-2 block. A
threshold is defined (Tactive) to determine the active extent of
AC coefficients. If the value of F01, F10 or F11 is above Tactive,
there is visible vertical, horizontal or diagonal edge in the
8x8 block which corresponds to vertical, horizontal or
diagonal motion boundaries, respectively. Similar to the
coarse edge detection in [9], the following criteria are used
to determine the dominant edge (motion boundaries) for
each 8x8 block (see Table I).

Table I. Vertical, horizontal or diagonal dominant edges
Vertical-dominant |F01| > |F10|, |F01| > Tactive and |F11| Tactive
Horizontal-dominant |F10| < |F01|, |F10| > Tactive and |F11| Tactive
Diagonal-dominant |F01| > Tactive, |F10| > Tactive and |F11| > Tactive

There are four 8x8 blocks within one 16x16 MB. Based
on the dominant edge of each 8x8 block, the following steps
are applied to predict the block size partition for every
16x16 MB in H.264 encoding.

a) When all four 8x8 blocks have no dominant edge, the
block partition is chosen to be 16x16.

b) When only one 8x8 block has dominant edge, if the
dominant edge has diagonal directions, the block size
partition is chosen to be 8x8. Otherwise, it is chosen to
be 16x16.

c) When two 8x8 blocks have dominant edges, if these
two blocks are not adjacent, the block size partition is
chosen to be 8x8. Otherwise, if the motion boundaries
in these two adjacent 8x8 block have the same
direction (not diagonal), the block size partition is
chosen to be 16x8 (horizontal) or 8x16 (vertical).
Otherwise, the block size partition is chosen to be 8x8.

d) When three or four 8x8 blocks have dominant edges,
the block size partition is chosen to be 8x8.

Note that, as in the case of full-search, our algorithm still
checks the skip and intra-frame modes for every MB.

4. EXPERIMENTAL RESULTS AND
COMPUTATIONAL COMPLEXITY ANALYSIS

The cascaded pixel-domain transcoding structure is used in
our experiments. The TM5 and JM12.4 reference software
codecs are used in our implementation [10][11].
Performance evaluations are carried out using a large
number of different video test sequences and a wide variety
of content. For instance, ten MPEG-2 videos with CIF
resolution are used which are encoded at 2 Mbits/sec. The
total frame number for each video is 300. The same
quantization factor (QF) is used for every frame during
H.264 encoding. Finally, the H.264 deblocking filter is
turned on for all the tested transcoding schemes.

(a) Residue picture (b) Original picture

Fig. 3 One frame of (a) residue picture and (b) original picture
(Football CIF)

1031

4.1. Experimental results of the proposed fast MB mode
selection transcoding scheme

We compared our proposed MPEG-2 to H.264 transcoding
scheme with two other schemes. One scheme re-uses the
MPEG-2 MVs without further motion re-estimation during
H.264 encoding. This represents the fastest transcoding
scheme but compromises the bit-rate savings. The second
scheme implements the full motion search using all 7 block
size partitions. Evaluations over a large number of possible
threshold values for Tactive showed that the proposed
algorithm achieves the best performance for Tactive = 12. The
threshold is adaptive with different sequences but only
slightly changed. Fig. 5 shows the rate-distortion curves of
four video sequences for all the tested transcoding schemes.
We observe that the proposed method achieves almost the
same rate-distortion performance as that of the full range
motion estimation. Compared to the transcoding scheme
which re-uses the MPEG-2 MV, the rate-distortion is
significantly improved.

4.2. Computational complexity analysis

Table II shows the PSNR, bit-rate and executing time of
motion estimation process of the proposed and full-search
transcoding schemes. The results show that our proposed
algorithm can reduce the computational complexity by 82%.
The bit-rate only increases 1.5% on average. The full-range
of motion estimation needs to search all 7 block size
partitions. The proposed transcoding scheme, on the other
hand, directly decides which block size mode to use and
only implements motion estimation for the chosen mode.
Thus, the proposed method needs only 1/7 of the
computations involved in the full search method. Since the
proposed algorithm needs to use the 3 AC coefficients of
each 8x8 block to predict the chosen block size partition, the
actual computational savings should a little bit smaller than
6/7 (approximately 86%). However, these extra
computations are very small since we only use 3 out of the
63 AC coefficients and thus are expected to have a limited
impact on the overall computational performance. This is in
accordance with the 82% computational reduction achieved
in our experiments.

Table II. Comparison of PSNR (dB), bit-rate (kbits/sec) and
motion estimation time (s)

PSNR Bit-rate Motion
estimation time

Sequences
(quantization

factor is
equal to 27)

Full
search

Proposed Full
search

Proposed Full
search

Proposed

Akiyo 39.43 39.33 166.89 170.59 34.7 5.6
Foreman 36.34 36.22 674.67 697.51 47.0 7.2
Football 35.88 35.81 1351.75 1355.39 59.5 10.5
Mobile 33.75 33.62 2814.09 2830.41 59.7 10.3

5. CONCLUSION

Motion re-estimating in MPEG-2 to H.264 transcoding

significantly improves the resulting H.264 video’s bit rate.
This process however requires a high computational effort
when full search is implemented. Our method uses only the
first 3 AC coefficients within each 8x8 block to predict the
block size partition mode in the H.264 encoding process.
The experimental results show that our proposed method
achieves very close rate-distortion performance as the full
search. At the same time, the proposed transcoding scheme
saves the computation efforts by more than 82%.

6. REFERENCES

[1] “Information technology – Generic coding of moving pictures
and associated audio information: Video,” ITU-T
Recommendation H.262, International Standard 13818-2, ed.
Feb. 2000.

[2] “Advanced video coding for generic audiovisual services, ”
ITU-T Recommendation H.264, International Standard
14496-10, ed. Mar. 2005.

[3] I. Ahmad, X. Wei, Y. Sun, Y-Q. Zhang, “Video Transcoding:
An Overview of Various Techniques and Research Issues,”
IEEE Trans. on Multimeida, pp. 793-804, Oct. 2005.

[4] X. Lu, A. Tourapis, P. Yin and J. Boyce, “Fast Mode
Decision and Motion Estimation for H.264 with a Focus on
MPEG2/H.264 Transcoding,” ISCAS 2005, pp. 1246–1249,
May 2005.

[5] Z. Zhou, S. Sun, S. Lei, and M.T. Sun, “Motion Information
and Coding Mode Reuse for MPEG-2 to H.264 Transcoding,”
ISCAS 2005, pp. 1230-1233, May 2005.

[6] G Fernández, H Kalva, P Cuenca, LO Barbosa, “Speeding-up
the Macroblock Partition Mode Decision in MPEG-2/H.264
Transcoding,” ICIP 2006, pp.869-872, Oct. 2006.

[7] G. Chen, Y. Zhang, S. Lin, F. Dai, “Efficient Block Size
Selection for MPEG-2 to H.264 Transcoding,” Proceedings
of the 12th annual ACM international conference on
Multimedia, pp. 300-303, 2004.

[8] M. Wien, “Variable Block-Size Transforms for H.264/AVC,”
IEEE Tran. on CSVT, pp. 604-613, Jul. 2003.

[9] B. Shen, I.K. Sethi, “Direct Feature Extraction from
Compressed Images,” SPIE, pp.404-414, 1996.

[10] MPEG-2 reference software, Test Model 5 (TM5). Available:
http://www.mpeg.org/MPEG/MSSG/.

[11] H.264/AVC Reference software JM10.2. Available:
http://iphome.hhi.de/suehring/tml/download/.

Akiyo
Foreman Football

Mobile

 Full-Search
 Proposed
 Re-using MV

Fig. 5 Rate-distortion curves of different transcoding schemes

1032

