
AN AREA REDUCTION SCHEME FOR THE H.264/AVC CAVLC ENCODER

Choudhury A. Rahman and Wael Badawy
Laboratory for Integrated Video Systems (LIVS), University of Calgary

Calgary, Alberta, Canada T2N 1N4
{carahman, badawy}@ucalgary.ca

ABSTRACT

This paper presents an approach to reduce the area used for
the implementation of look up tables (LUTs) in the
H.264/AVC Context-based Adaptive Variable Length
Coding (CAVLC) encoder. Replacing the LUTs of the
coeff_token by an algorithm that closely follows the
codeword features and can be easily implemented with
simple computational elements, the proposed scheme shows
that an area savings of more than 40% can be achieved with
a bit-rate increase of less than 0.8%. The proposed approach
is very effective to reduce the area for low bit-rate
applications such as mobile video applications which have
simple/low to moderate motion characteristics.

Index Terms— Context-based Adaptive Variable
Length Coding (CAVLC), Entropy coding, H.264/AVC,
VLSI implementation.

1. INTRODUCTION

The video coding standard approved by ITU-T as
Recommendation H.264 and ISO/IEC as International
Standard 14496-10 (MPEG-4 Part 10) Advanced Video
Coding (AVC) [1] has been finalized in May 2003. This
new standard H.264/AVC is designed for application in the
areas such as broadcast, interactive or serial storage on
optical and magnetic devices such as DVDs, video-on-
demand or multimedia streaming, multimedia messaging
etc. over ISDN, DSL, Ethernet, LAN, wireless and mobile
networks. Some new features of the standard enable
enhanced coding efficiency such as motion estimation with
quarter pixel accuracy, multiple reference frames and
variable block sizes for inter prediction. Moreover, the intra
prediction has also lifted the coding performance. The
advanced entropy coding method (CAVLC and CABAC)
used in the standard further improves the performance.

The CAVLC entropy coding method is used for coding
quantized transform coefficients of the residual images. It is
highly context adaptive that results in very good coding
efficiency. There are several architectures proposed so far
for the CAVLC encoder [2-4]. The main drawback of these

architectures is that they all require larger storage space, so
their implementation cost is higher. The requirement for
larger storage space comes from the LUTs for storing VLC
tables. In this paper, we propose an area savings approach
by which the costly LUTs can be replaced by simple
computational elements. This is done by replacing the VLC
tables with an algorithm that generates the VLC codewords.
The algorithm offers regularity and follows the
characteristics of the codewords as closely as possible so
that the tradeoff does not cost much. The experimental
results show that the algorithm is very effective in reducing
the area of implementation especially for low bit-rate case
with very minimal increase in bit-rate.

The rest of the paper is organized as follows: Section 2
discusses the algorithm of the Context-based Adaptive
Variable Length Coding (CAVLC). Section 3 presents the
proposed approach to reduce the area used for the
implementation of the look up tables (LUTs). Performance
analysis is shown in section 4. Finally, section 5 concludes
the paper.

2. THE CAVLC ENTROPY CODING

In the proposed H.264/AVC standard, two entropy coding
methods are included, namely context-based adaptive
variable length coding (CAVLC) [1,5] and context-based
adaptive binary arithmetic coding (CABAC) [6]. In the
CAVLC entropy coding, only the quantized transform
coefficients (4x4 blocks of luma and 2x2 blocks of chroma)
of the residual images are coded. Other information, i.e.,
macroblock (MB) header, is coded using Exp-Golomb
codes. The transform coefficients are first scanned in a
zigzag fashion. The zigzag scanning is done to produce long
runs of zeros. CAVLC uses multiple VLC tables. The VLC
tables are switched depending on previously coded
elements. This result in improved coding efficiency
compared to using a single VLC table. The CAVLC
encoder encodes the following elements of a block of
transform coefficients in order.

1. coeff_token: Encodes the number of nonzero
coefficients and trailing ones (maximum 3, the rest
are coded as normal coefficient). There are three

10211-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

VLC tables and one FLC table to choose from for
the luma block depending on the number of
nonzero coefficients of the left and upper block of
the current block and one VLC table for the
chroma block.

2. sign_trail: Sign of the trailing ones (0 for positive

and 1 for negative ones) in reverse order.

3. levels: Encodes the nonzero coefficients excluding
the trailing ones in reverse order. Each level is
encoded by one of the seven VLC tables depending
on the magnitude of each successive encoded level.

4. total_zeros: Encodes the total number of zeros

occurring after the first nonzero coefficient in
reverse order by separate VLC tables for luma and
chroma.

5. run_before: Encodes the number of zeros
preceding each nonzero coefficient in reverse
zigzag order by a VLC table.

3. THE PROPOSED APPROACH

One of the difficulties in VLSI implementation of the
CAVLC coder is the VLC tables. Traditionally, the VLC
tables are implemented with memory (LUT) because the
VLC codes do not follow any mathematical relationships.
Since a lot of VLC tables are used for CAVLC coding, the
required storage space for hardware implementation is large.
In this paper, we propose an area savings approach by
replacing the VLC tables in a way so that they can be
implemented with simple computational elements such as
adders, subtractors and MUXs and thereby eliminating the
requirement of huge memory. The tradeoff of the approach
is the bit-rate. Nevertheless, the experimental results show
that the proposed approach is very effective for low bit-rate
applications such as mobile video applications where, an
area savings of more than 40% can be achieved with a bit-
rate increase of less than 0.8%.

The implementation of the coeff_token VLC and FLC
tables are shown in this paper. There are three VLC tables
and one FLC table to choose from for the luma blocks (table
I) and the choice depends on the number of total
coefficients in the left block (NL) and the upper block (NU)
of the current block. A parameter N is calculated for this
purpose following the pseudo code shown in Fig. 1. For
chroma blocks, there is only one VLC table.

The VLC tables are biased from small to large number of
total nonzero coefficients in a block so that coeff_token can
be coded with smallest possible codeword. The FLC is a 6
bit code. The least significant 2 bit represents the trailing
ones and the rest represents the total number of nonzero
coefficient in the current block.

Table I
Choice of the coeff_token table

Value of N Table

N < 2 VLC 1
2 N < 4 VLC 2
4 N < 8 VLC 3
N 8 FLC

if upper block and left block is available

2
UL NN

N

else if upper block is available
UNN

else if left block is available
LNN

else
0N

Fig.1. Pseudo code for calculating N from NL and NU.

Table Pseudo Code

VLC 1 /
Chroma DC

if ((TotalCoeff - Trailing Ones) == 0){
if (Trailing Ones < 2){

 Code = 1;
 Length = 1 + Trailing Ones; }

else{
 Code = Trailing Ones;
 Length = 4; }
}else{

Code = 4 + Trailing Ones;
Length = (TotalCoeff - Trailing Ones) + 5; }

VLC 2 if ((TotalCoeff - Trailing Ones) == 0){
if (Trailing Ones < 2){

 Code = 2 + Trailing Ones;
 Length = 2; }

else{
 Code = Trailing Ones;
 Length = 3; }
}else{

Code = 4 + Trailing Ones;
Length = (TotalCoeff - Trailing Ones) + 4; }

VLC 3 if ((TotalCoeff - Trailing Ones) < 2){
if (TotalCoeff == Trailing Ones){

 Code = 8 + Trailing Ones;
 Length = 4; }

else{
 Code = 12 + Trailing Ones;
 Length = 4; }
}else{

Code = 4 + Trailing Ones;
Length = (TotalCoeff - Trailing Ones) + 2; }

FLC Length = 6;
if (Trailing Ones == 0 &&

(TotalCoeff - Trailing Ones) == 0)
 Code = 3;
else

Code = {(TotalCoeff– 1)[3:0], trailing_ones}

Fig.2. Pseudo code for of the proposed algorithm for
generating the VLC tables.

Fig. 2 shows the pseudo code of the proposed scheme

for generating the VLC tables for the coeff_token. The

1022

algorithm offers a regularity that can be easily implemented
with computational elements for efficient VLSI
implementation. The desired feature of the codes, i.e.,
shorter codewords for the most probable symbols, is also
tried to maintain as closely as possible especially for low
bit-rate case, i.e., small number of nonzero coefficients, in
order to make the algorithm suitable for mobile video
applications where area savings is relatively a big concern.

The block diagram of the proposed algorithm is shown
in Fig. 3. It has 3 blocks. The Code generator generates the
code for the VLC and the Length Generator generates the
length of the VLC code. The Controller block generates the
control signals for the two generators.

Controller

Code
Generator

Length
Generator

N

TotalCoeff

TrailingOnes

Code

Length

Fig.3. The block diagram of the proposed architecture.

The detail of the proposed architecture is shown in
Figs.4, 5 and 6. The ‘Code’ generator is built with an adder,
a subtractor and an output MUX controlled by the selector
signal C2. The input MUX controlled by the selector signal
C1, is replaced by logic gates during synthesis because of
having constant inputs. On the other hand, the ‘Length’
generator is composed of 2 adders, 1 subtractor and an
output MUX. The two MUXs (controlled by the selector
signals L1 and L2), are again replaced with logic gates
during synthesis for the same reason.

4. PERFORMANCE ANALYSIS

The proposed architecture for coeff_token is coded in
Verilog HDL, simulated and synthesized by ModelSim 6.0
and Xilinx ISE development tools 6.2, respectively. The
target device for synthesis was the Xilinx Virtex II FPGA
(2v3000fg676-4). Table II shows the synthesis results.

Table II
Synthesis results of the proposed architecture

CLB Slices 4 input LUTs Bonded IOBs Gate Count

26 45 21 315

The total gate count of the architecture is 315. This gives
an area savings of around 43% than the implementation
reported in [2]. Table III shows the comparison.

Table III

Comparison with the proposed design with others

 Proposed Chien et. al. [2] Chen et. al. [3]
Gate Count 315 554 864

The JM 11.0 reference software [7] is used in the
simulation for evaluating the performance of the proposed
algorithm. Table IV shows the result with QCIF main
profile (I-B-P-B-P) frame sequences and table V shows the
result with QCIF baseline profile (I-P-P-P) frame
sequences. Both the tables show that at quantization
parameter (QP) value 30, the overall bit-rate increase is less
than 0.8%.

‘10’
‘100’

‘1100’
‘1000’

+

TrailingOnes

TotalCoeff

‘1’
Code

C1

C2

-
‘1’

‘11’

Fig.4. Architecture detail of the Code Generator block.

‘011’
‘100’
‘110’

TrailingOnes

TotalCoeff

‘010’
‘100’

Length

L1

L2

L3

-
+

‘101’

‘010’

+
‘1’

Fig.5. Architecture detail of the Length Generator block.

C(<) C(=) C(=)C(<)

-

TrailingOnesTotalCoeff

‘0’ ‘0’‘10’

Combinational Logic

L1 L2 L3C1 C2

N

‘10’

Fig.6. Architecture of the Controller unit.

Table IV
Experimental results with QCIF main profile (I-B-P-B-P)

frame sequences

Bit-rate increase (%)

I P B Overall
Foreman 0.75 0.12 0.15 0.22
Mobile 1.59 0.06 -0.21 0.30
Carphone 0.53 0.07 0.10 0.13
Claire 0.43 0.19 0.29 0.29
Container 1.30 0.29 0.57 0.77
Hall 0.85 0.18 0.07 0.37
Miss America 0.69 0.31 -0.36 0.22
News 0.91 0.22 0.05 0.38
Salesman 0.55 0.31 -0.15 0.37
Silent 0.46 0.19 0.29 0.28

1023

Table V
Experimental results with QCIF baseline profile (I-P-P-P)

frame sequences

Bit-rate increase (%)

I P Overall
Foreman 0.75 0.12 0.22
Mobile 1.63 -0.10 0.23
Carphone 0.53 0.23 0.29
Claire 0.44 0.47 0.45
Container 1.30 0.21 0.74
Hall 0.85 0.04 0.31
Miss America 0.68 0.06 0.21
News 0.76 0.08 0.30
Salesman 0.47 0.43 0.44
Silent 0.55 0.33 0.38

Fig. 7 shows the bit-rate increase of three different

sequences (Container, Salesman and Miss America) that
reported the highest, mediocre and lowest overall bit-rate
increase in table V for baseline profile (I-P-P-P) frame
sequences. The figure also shows that for moderate to high
compression ratio, i.e., low bit-rate applications such as
mobile video applications, the bit-rate increase is relatively
much smaller. As a result, the area savings for such
applications is much beneficial. Fig. 8 shows the plot of
overall bit-rate increase of different frames sequences at QP
= 30. This figure also justifies the tradeoff for typical
handheld applications, i.e., phone conferencing, news
broadcasting etc., which have simple/low to moderate
motion characteristics.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50

Quantization parameter (QP)

Bi
t-r

at
e

in
cr

ea
se

 (%
)

Container Salesman Miss America

Fig. 7. Bit-rate increase of 3 QCIF baseline profile (IPPP)

frame sequences at different QP values.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Foreman
Mobile

Carphone
Claire

Container
Hall

Miss
America

News

Salesman
Silent

B
it-

ra
te

 in
cr

ea
se

 (%
)

Fig. 8. Overall bit-rate increase of different frames

sequences at QP = 30.

5. CONCLUSION

This paper presents an area savings approach by replacing
the LUTs for the VLC tables of a CAVLC coder in a way so
that they can be implemented with simple computational
elements and thereby eliminating the requirement of huge
memory. The proposed algorithm follows the desired
feature of the codes as closely as possible especially for the
low bit-rate case so that the tradeoff between bit-rate
increase and area savings proves its feasibility. The
experimental results show that the proposed approach is
very effective for mobile video (low bit-rate) applications
where, an area savings of more than 40% can be achieved
with a bit-rate increase of less than 0.8%.

6. ACKNOWLEDGEMENTS

The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada (NSERC), the
Canadian Foundation for Innovations (CFI), Micronet R&D
Canada, and iCORE for supporting this research.

7. REFERENCES

[1] “Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification (ITU-T Rec. H.264 |
ISO/IEC 14496-10 AVC),” in Joint Video Team (JVT) of ISO/IEC
MPEG and ITU-T VCEG, JVT-G050r1, May 2003.

[2] C. D. Chien, K. P. Lu, Y. H. Shih, and J. I. Guo, “A high
performance CAVLC encoder design for MPEG-4 AVC/H.264
video coding applications,” in the Proc. of IEEE ISCAS 2006, pp.
3838–3841.

[3] T. C. Chen, Y. W. Huang, C. Y. Tsai, B. Y. Hsieh, and L. G.
Chen, “Architecture design of context-based adaptive variable-
length coding for H.264/AVC,” IEEE Trans. On CAS-II, vol. 53,
issue. 9, Sept. 2006, pp. 832–836

[4] Y. K. Lai, C. C. Chou, and Y. C. Chung, “A simple and cost
effective video encoder with memory-reducing CAVLC,” in the
Proc. of IEEE ISCAS 2005, vol. 1, pp. 432–435.

[5] Iain E.G. Richardson, H.264 and MPEG-4 Video Compression,
Wiley Publishers, December 2003, ISBN 0470848375.

[6] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based
Adaptive Binary Arithmetic Coding in the H.264/AVC Video
Compression Standard,” IEEE Trans. Circuits Syst. Video Tech.,
vol. 13, issue. 7, pp. 620–636, July 2003.

[7] Joint Video Team (JVT) reference software, version 11.0,
http://iphome.hhi.de/suehring/tml/download/jm11.0.zip

1024

