
A BLOCK-BASED BACKGROUND MODEL FOR VIDEO SURVEILLANCE 
 

Xiaoyu Deng, Jiajun Bu, Zhi Yang, Chun Chen, Yi Liu 
 

College of Computer Science, Zhejiang University 
Hangzhou, China 

Email: {dengxy, bjj, yangzh, chenc, yiliu}@zju.edu.cn 
 

ABSTRACT 
 
Background modeling is an important component of many 
computer vision systems. The numerous approaches to this 
problem differ in the statistical models used to describe the 
temporal behavior of single pixels. Without proper use of 
spatial coherence between pixel values, these models suffer 
greatly from memory consumption. In order to reduce 
spatial redundancy in the data, we propose a novel block-
based background model which clusters pixel values within 
each small block of frames, and build weighted indexes for 
each pixel to track color values temporally. Compared with 
traditional models, the proposed model greatly reduces 
average number of bytes needed to model a pixel, and can 
be used in real-time video surveillance systems. 
 

Index Terms— Video signal processing, Surveillance, 
Object detection 
 

1. INTRODUCTION 
 
The extraction of moving objects from video is the first step 
in many computer vision systems. A common method used 
to achieve automatic extraction is background subtraction, 
which detects motion pixels by comparing each new frame 
with a model of the background, then classifies pixels into 
different types, i.e., foreground, background. 

The simplest background model is to treat the intensity 
values at each pixel as a single Gaussian distribution [1]. 
However, such single-mode models cannot handle dynamic 
backgrounds, such as waving trees, lighting changes and 
shadow casts. Stauffer and Grimson use a mixture of 
Gaussians model to represent dynamic backgrounds, and 
update the model using parameter estimation techniques [2]. 

To overcome the problem of inaccurate background 
model caused by errors in parameter estimation for fast 
varying pixels, Elgammal, Harwood, et al. use a non-
parametric model [3]. The model employs a kernel estimator 
to determine which type current pixel value belongs to, 
based on recently observed values at the same pixel. 

In [4], the authors build a simple pixel-based statistical 
model using a codebook approach. By clustering pixels into 
thin cylinders in 3-D color spaces, the codebook model 

reduces 44% of memory used compared to the mixture of 
Gaussians model. Calculations of probabilities can also be 
avoided, which is highly computing-intensive. 

Region- or frame-based models are developed by some 
researchers recently [5-7]. These models consider pixels as 
correlated random variables, and estimate probabilities 
based on neighborhood relationships. Compared with these 
models, our model does not explicitly use spatial and 
temporal relationships between pixels. Instead, we focus on 
the color similarities among them, and try to get rid of 
redundant information by clustering similar colors. 

Compared with pixel-based models, our block-based 
model maintains pixel values collectively within 4x4 or 8x8 
square blocks. Similar colors at different pixels can be 
represented as one cluster instead of many. Usually, the 
average number of clusters inside a block is limited, due to 
the coherence between neighboring pixels. Since the 
number of acquired samples increases, the clustering can act 
more accurately than on small sample volumes. The model 
also learns dynamic background faster, since most of the 
pixels of dynamic background move inside small regions. 

Our model maintains a small array of weighted indexes 
for each pixel. Each weighted index points to a color cluster 
of the block. The weight is adaptively learned from the rate 
of that indexed color occurs. 

In Section 2, we describe the data structure and the 
updating procedure of the proposed model, including the 
block-based color clustering and the weighted indexing. In 
Section 3, we will show the performances of our model, 
compared with other classic models. Finally, conclusion and 
discussion are presented in Section 4. 
 

2. PROPOSED MODEL 
 
Before the proceeding of background modeling, we assume 
the camera is static in the world coordinates. In order to 
handle moving cameras, estimation and compensation of the 
global motion must be done first, then use a static 
background model to deal with the processed video. There 
are also some integrated background models using build-in 
methods to separate background and foreground according 
to different moving characteristics [8]. 

10131-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



For a video frame consisting of HW × pixels, 
)},1(),,1(|{ , HyWxP yx ∈∈ , we segment it into square 

blocks )},1(),,1(|{ , S
Hn

S
WmB nm ∈∈ , S is the block 

width. The size of blocks is chosen according to picture size 
to efficiently utilize spatial coherence information. we 
choose 8x8 for CIF (352x288) and 4x4 for QCIF (176x144), 
for bigger or smaller frames, the choice of block size has an 
upper limit that depends on the speed of the machine. 

For each block nmB , , there is a color cluster array, 

consisting of L cluster: },...,,{ 21, Lnm cccC = . 
Our cluster array is similar to the codebook in [4], 

except the cluster array is defined for each block and the 
codebook is defined for each pixel. Since this, some pixel-
wise codebook attributes such as maximum negative run-
length (mnrl) are removed. We will see later how weighted 
indexing plays the pixel-wise role in our model. 

Each cluster ),...,2,1( Lici = consists of 6 attributes: 
 
y , the mean value of Y color component, 

u , the mean value of U color component, 

v , the mean value of V color component, 
f , frequency of total samples occurred, 
p , the creation time of the cluster. 

 
For each pixel yxP , , there is a weighted index array 

consisting of N indexes: },...,,{ 21, Nyx iiiI = . Each index 

),...,2,1( Nkik = consists of 3 items: 
 
idx , the index of the cluster in cluster array, 
w , the weight of this cluster of this pixel, 
q , the last time color appears in this cluster. 
 
The general updating procedure of the proposed model 

works as follows: when new value of a pixel arrives, (1) 
lookup in the color cluster array of the block which the 
pixel belongs to, if hit, update the cluster, if not hit, create a 
new cluster, (2) lookup in the weighted index array of the 
current pixel, if hit, update the index, if not hit, create a new 
index, (3) determine the type of the pixel according to the 
weights. The whole procedure of updating the background 
model is shown in Figure 1. 

 
When the size of the color cluster array L reaches a 

maximum, cluster with smallest f is replaced by a new 
coming color and all the old indexes pointing to that cluster 
must be removed. Because it is inefficient to search every 

pixel and delete invalid indexes, we use a later-delete 
approach. Replace cluster without deleting indexes first, 
then, when indexes are accessed later, use p and q to verify 
indexes: since q is the last time some color appears in this 
cluster, it must be larger than the color cluster creation 
time p , otherwise, the index is invalid. 

 

 
 

Figure 1. Background model updating procedure. 
 
2.1. Block-based Color Clustering 
 
Human eyes are more sensitive to intensity changes than 
color changes. In our model, we employ the YUV format 
which is widely used in video coding applications. In a 
small region of a frame, the U, V variations between pixels 
are very small, due to the color consistency of most object 
surfaces, and Y component varies greatly, see Figure 2. 
YUV format makes it convenient to cluster colors into 
cylinders in 3-D color space [4]. 

The color cluster array is initialized to be empty. When 
a new pixel ),,( tttt vuyp = arrives, search the array for a 

cluster with ),( tt vu differs from ),( vu less than a certain 

threshold 1ε , which is manually chosen between 5 and 15, 
determined by the color complexity in the video. Then, 

ty must be within a region near y , the dimension of the 

region is proportional to y by a linear factor 2ε , since the 
fact that intensity varies more greatly when the value 
increases. Typically, 2ε is between 5/255 and 15/255. In the 
codebook model, the lower-bound and upper-bound of 
intensity are estimated dynamically according to deviations 
between current value and the mean value. However, with 
small variations at some pixels, the training process always 
tends to over-fit the data, which causes too many clusters, 
so we use a linear proportional threshold instead. 

 

1014



 
 

Figure 2. YUV distribution of an 8x8 block in 20 frames. 
 

Then, the mean values of color components y , u , v and 
frequency f will be updated. If no proper cluster is found, 
create a new cluster and initialized it with current color 
values. The whole clustering and updating procedure is 
presented in Table 1. 

 
Table 1. Block-based Color Clustering. 

 
I. New pixel ),,( tttt vuyp = arrives, nmt Bp ,∈  

II. For each ),,,,( pfvuy in nmC ,  

If 1)),(),,(( ε≤vuvudiff tt and ),1( 2εδ×∈ yyt

1
),,(),,(),,(

+
+×

=
f

vuyfvuyvuy ttt  

1+= ff  
III. If no proper cluster found, create a new cluster 

),,(),,( ttt vuyvuy =  

1=f  
tp =  

 
2.2. Weighted Indexing 
 
Compared with pixel-based background models, which 
record color variations at a pixel directly, block-based 
model must keep block-wise and pixel-wise information 
separately. In our model, we maintain an index array for 
each pixel, while each index in the array points to a color 
cluster used to appear at the pixel. 

In models such as mixture of Gaussians [2], different 
colors are weighted according to the rate of occurrence 
automatically. Color weights perform a critical role in the 
decision of types which a pixel belongs to. Usually, the 
weight updating procedure uses an unsupervised learning. 
The simplest one adopted in mixture of Gaussians is to 
adjust the weight w according to a leaning parameterα : 

Mww ×+×−= αα )1(                        (1) 
M is 1 when the new pixel value is in the cluster to be 

weighted, and 0 otherwise, α is typically between 0.3 and 
0.7. We employ the same method used by mixture of 
Gaussians, and merge the weight information with the color 
cluster index, called weighted index. 

Finally, decision must be made to see whether a pixel 
belongs to the background, or the foreground. Since the 
weights of colors are adjusted every frame, rare colors’ 
weights descend very quickly. On the other hand, Most of 
the frequent colors’ weights become very large, and is in a 
dominant ratio β of the sum of weights of all colors, β is 
usually from 0.6 to 0.9. A pixel with color index of 
weight w is considered to be a background pixel if the sum 
of weights larger or equal to w exceeds the sum of all 
weights times β .  
 

3. EXPERIMENTAL RESULTS 
 
In order to validate the proposed model, we tested the 
software using standard MPEG-4 test sequences “Hall” and 
a road surveillance video captured from real road scenes. 
There’s a car moving along the lane in this video, the 
background is almost static except moving tree leaves. Both 
formats of the videos are YUV 4:2:0 CIF (352x288). 

We compared our model with the mixture of Gaussians 
(MOG) model (implemented by OpenCV [9]), the results 
are shown in Figure 3. Compared with results of MOG, our 
results show better object detection and a clean edge, with 
lower false alarm rate, due to the color coherence within 
blocks, and a faster learning speed of block-based model. 

Since our model groups pixels into blocks, the average 
color cluster number respect to pixel number is small. For a 
CIF video and block size 8x8, we assign the maximum color 
clusters per block to 100, this is usually enough and won’t 
cause data shuffling (in fact, most block’s maximum color 
cluster number is 50-70). We set the index array size for 
each pixel to 10, because the weights of colors that do not 
often appear will degrading very fast and become negligible, 
a small index array will not be affected by unstable 
backgrounds and foregrounds. Compared with MOG, our 
model saves 62% of the memory, see Table 2. For a CIF 
video, the total number of bytes required is only 7.7Mbytes, 
which can be fitted into small memory devices also. 

 
Table 2. Memory usage compared with MOG. 

 
MOG Our method Memory saved 

200 byte/pixel 76 byte/pixel 62% 

 

1015



 
 

Figure 3. Proposed method compared with MOG (the first 
row is the original video in gray values, the second row is a 
binary mask produced by our method, the third row is the 

MOG method implemented by OpenCV) 
 

We implemented our model in C++, compiled by 
Microsoft Visual C++ 2005, and runs on a Pentium M 
1.8GHz laptop computer. We tested running speeds of our 
model and MOG, and made a comparison between the two, 
using standard MPEG-4 test sequence “Hall” and our 
surveillance video, which shows our model is generally 
much faster, see Table 3. 
 

Table 3. Speed compared with MOG. 
 

Sequence MOG(fps) Ours (fps) Speed up

MPEG-4 Hall 13.2 18.9 43% 

Surveillance 12.6 20.0 58% 

 
4. CONCLUSION 

 
In this paper, a novel block-based background model is 
proposed. The new model achieves the goal of reducing 
memory usage successfully without speed penalties. In 
scenes with dynamic background, the foreground detection 
result of our model is more accurate than the classic 

background model MOG, with effective foreground 
detection and low false alarm rate. 

Currently, our model uses a full search method in 
block-based color clustering. In future studies, we will focus 
on developing faster clustering algorithms, utilizing 
weighted indexes of neighboring pixels as a clue to speedup 
the search. We will also explore more effective algorithms 
for color clustering and color weighting for more dynamic 
scenes. 
 

5. REFERENCES 
 
[1] C.R. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland, 
“Pfinder: Real-Time Tracking of the Human Body”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 
19, No. 7, pp. 780-785, July 1997. 
 
[2] C. Stauffer, W.E.L. Grimson, “Adaptive background mixture 
models for real-time tracking”, IEEE Conference on Computer 
Vision and Pattern Recognition, 1999. 
 
[3] A. Elgammal, D. Harwood, L. Davis, “Non-parametric model 
for background subtraction”, Lecture Notes In Computer Science, 
Vol. 1843, pp. 751-767, 2000. 
 
[4] K. Kim, T.H. Chalidabhongse, D. Harwood, L. Davis, “Real-
time foreground-background segmentation using codebook model”, 
Real-Time Imaging, Elsevier, No. 11, pp. 172-185, 2005. 
 
[5] M. Cristani, M. Bicego, V. Murino, “Integrated region- and 
pixel-based approach to background modeling”, Proceedings of 
IEEE Workshop on Motion and Video Computing, 2002. 
 
[6] K. Toyama, J. Krumm, B. Brumitt, B. Meyers, “Wallflower: 
principles and practice of background maintaenance”, IEEE 
International Conference on Computer Vision 1999. 
 
[7] A. Monnet, A. Mittal, N. Paragios, V. Ramesh, “Background 
modeling and subtraction of dynamic scenes”, IEEE International 
Conference on Computer Vision 2003. 
 
[8] Y. Zhang, S.J. Kiselewich, W.A. Bauson, R. Hammoud, 
“Robust Moving Object Detection at Distance in the Visible 
Spectrum and Beyond Using A Moving Camera”, IEEE 
Conference on Computer Vision and Pattern Recognition 
Workshop, 2006. 
 
[9] OpenCV, http://www.intel.com/technology/computing/opencv/. 

1016


