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ABSTRACT

We apply pattern recognition techniques to enhance the robust-
ness of moment-invariants-based image classifiers. Moment in-
variants exhibit variations under transformations that do not pre-
serve the original image function, such as geometrical transforma-
tions involving interpolation. Such variations degrade the perfor-
mance of classifiers due to the errors in the nearest neighbor search
stage. We propose the use of Linear Discriminant Analysis (LDA)
and Principal Component Analysis (PCA) to alleviate the varia-
tions and enhance the robustness of classification. We demonstrate
the improved performance in image registration applications under
spatial scaling and rotation transformations.

Index Terms—Moment invariants, principle component anal-
ysis, linear discriminant analysis, image registration

1. INTRODUCTION

Moment invariants (MIs) are a class of image descriptors first de-
rived by Hu [1]. The general interest in MIs stems from their
ability to describe the shape and photometric intensity of an im-
age, and to remain invariant to several classes of degradations,
e.g. affine transformations [2] and blurring [3]. Their compact
representation reduces storage requirements, which is desired spe-
cially in colored image recognition. However, MI-based recogni-
tion deteriorates in the presence of common sources of image vari-
ations, which can be introduced at various stages such as capturing
(e.g. camera noise), digitization (spatial and intensity quantization
noise), and digital processing (e.g. image-resampling). The effects
of these variations were analyzed in several works. For instance,
the effects of noise and spatial quantization on some moment in-
variants were analyzed in [4,5] respectively. However, no solution
attempts were offered.

In this paper, we propose the use of techniques that can be
flexibly applied to improve the robustness of moment invariants to
several degradation sources. Our MI-based classification system
employs linear discriminant analysis (LDA), and principal compo-
nent analysis (PCA) to increase the recognition robustness. LDA
is driven by observations generated by degrading several instances
of each class and calculating their moment invariants. LDA is then
applied to increase class clustering and separation. Then, PCA
is applied to reduce the dimensionality of the feature space, and
therefore alleviating redundancies and aiding with data visualiza-
tion.

The organization of the paper is as follows: Section 2 out-
lines the mathematical theory of moment invariants and discusses
their practical implications. Section 3 introduces the proposed

technique. Section 4 demonstrates the improved performance of
recognition in the chosen application of image registration. Finally
is the conclusion in Section 5.

2. MOMENT INVARIANT DESCRIPTORS

MI-based image recognition started with Hu’s seminary work [1],
who derived MIs invariant to translation, scaling and rotation. Sev-
eral works followed to analyze their noise performance [4], and
derive invariants to new transformations, such as blurring [3], and
as affine transformations [2].

To derive moment invariants, digital images are assumed to
be continuous two-dimensional probability distribution functions.
This enables describing images using common statistical quanti-
ties, and mapping them to achieve invariance. The statistical quan-
tity of interest here is the central moment (CM) of order (p + q),
which given an image f(x, y), can be defined as

Cpq =
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−∞

�
∞
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(x− xc)
p(y − yc)

qf(x, y) dxdy, (1)

where xc = m10/m00 and yc = m01/m00 are the centriods of
x and y respectively. The centroid subtraction renders the CMs
translation-invariant. Furthermore, the CMs can be made scale
invariant by normalization, yielding the normalized central mo-
ments, given by μpq = Cpq/Cw

00 where w = (p + q + 2)/2. Hu’s
MIs are mappings of second- and third-order normalized central
moments, and they are rotation-, scale- and translation-invariant.
Rigorous definitions of Hu’sMIs are available in [1]. Subsequently,
several MIs were derived, of which we pick the Affine Moment In-
variants (AMI) [2]. AMIs are invariant to affine transformations,
which map the coordinates (x, y) of an image to (x̂, ŷ) according
to

x̂ = a11x + a12y + a13, ŷ = a21x + a22y + a23. (2)

AMIs address the redundancy issues linked with Hu’s moment in-
variants, and they can be derived up to any order. AMIs are used
in the experiments in Section 4, and the reader is referred to [2] for
their rigorous definitions and derivations.

In proving the invariance of a certain MI, the image and the
transformation to which the MI is invariant are assumed to be con-
tinuous and noise-free. Such conditions do not exist practically, as
images are represented by finite-precision pixels in a discrete coor-
dinate system, and noise is introduced to images due to capturing
devices and quantization effects. Therefore, several captured in-
stances of the same scene are likely to exhibit variations in the
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Fig. 1. Moment Invariants scatter plot for the first two AMIs of
rotated and scaled instances. The image is “Lena”.

calculated moment invariants, which will vary based on the cap-
turing and quantization noise levels. Teh et al. [4] analyzed the
effects of noise on moment invariants, and have found that varia-
tions are inevitably introduced, and that higher order moments are
more sensitive to noise. As for the effects of quantization, Salama
et al. [5] have analyzed the disparity between ideal and quantized
MIs calculated for square images, and have found that the error de-
creases as the image size increases, and the manner of decreasing
may or may not be monotonic.

The restriction to the continuous domain also applies to trans-
formations. MIs that are professed to be invariant to a certain
transformation may not be so if the transformation is applied in
the digital domain. For instance, several MIs were derived to be
invariant under coordinate mapping transformations, e.g. rotations
and affine transformations. These transformations may occur due
to changes in the capturing device orientation, or are digitally in-
duced. In the former case, the transformation is continuous and it
is expected that moment invariants will exhibit minor variations
(mainly due to quantization and capturing noise). In the latter
case, variations are expected to increase due to the nature of digital
transformations, which usually involve nonlinear operations (e.g.
image-resampling which involves truncations of pixel values and
rounding of coordinates). An example of the variations caused
by such nonlinear effects is shown in Figure 1, which shows the
space formed by the first two AMI moments calculated of rotated
and scaled instances of the image “Lena”. [5] reported variations
due to digitally-induced projection and rotation transforms respec-
tively. Figure 1 also reveals a common difficulty with the calcula-
tion of MIs, namely the required precision. As higher moments are
used, they are more aggressively normalized, leading to extremely
minute numbers that require high precision.

3. PROPOSED SYSTEM

3.1. Classification System Definition

Our main contribution is the introduction of a data-driven class
separation/clustering and dimensionality reduction toMI-based im-
age recognition. Our approach performs the classification in a
space with maximum clustering of classes, which reduces the like-
lihood of errors in the nearest neighbor search (NNS) stage. Also,
we would like for this space to be of minimum size by eliminating
the redundancies which may exist between MI elements. We de-

sign a combined algorithm using LDA for the first aim and PCA
for the second.

Based on the expected degradation model, the class occupancy
in the feature space is grown from a single point, which is the usual
case in MI-based recognition, to multiple points corresponding to
different degraded class instances. Therefore, decreased separa-
tion, and in some cases overlapping, between the regions occu-
pied by classes is likely to occur. We use LDA to improve class
discrimination by projecting the data to a space with maximized
separation of classes. To aid with data visualization, and to elim-
inate redundancies that might exist between MI elements [2], the
dimensionality of the LDA space is then reduced by calculating
its principal components [6]. We now proceed with the rigorous
definition of the aforementioned process.

Suppose an n-class system is given by β = [b1 b2 · · · bn]T

where bi is the ith class, i ∈ [1, n]. We define the MIm opera-
tor, which calculates the moment invariants of an image function
f(x, y), resulting in an m-element vector, where m is a function
of the MI type and the order of the moments used.

MIm(f(x, y)) = {φ1, φ2, · · · φm} = φ̂ ∈ R
m. (3)

If moment invariants are used as feature vectors for the classifi-
cation system β, the class matrix α ∈ R

n×m is defined as α =
[α1α2 · · ·αn]T , where αi = MIm(bi), αi ∈ R

m. We assume
an expected degradation model D = [d1 d2 · · · dψ]T which con-
sists of ψ types. Class observations are generated by applying the
degradations in the set above to the objects in the class-system
β. Each degradation is applied with its own set of parameters. The
cardinality of each degradation parameter set is denoted asCi, and
therefore, the total number of observational instances per class is
given by L =

�ψ

i=1
Ci. After applying the degradations to the

class-system β, and calculating their moment invariants, the ob-
servation matrix A ∈ R

z×m (where z = L × n) is formed as
follows

A = [α̂1 α̂2 · · · α̂n]T , (4)

where α̂i ∈ R
L×m. Each row of A represents an observation (de-

graded class instance), whereas each column belongs to a variable
(i.e. an MI element). The observational-data generation process is
illustrated in Figure 2.

3.2. Clustering and Dimensionality Reduction

LDA is used to project the data onto a space that maximizes the
separation between classes while keeping classes as compact as
possible. Let μi and Si be the mean vector and covariance matrix
of class α̂i, the within-class scatter matrix Sw and the between-
class scatter matrix Sb are

Sw =

n�

i=1

LSi, Sb =

n�

i=1

μiμ
T
i . (5)

The fisher criterion [6] is given by

vT
ldaSbvlda

vT
ldaSwvlda

. (6)

Finding the projection vector vlda that maximizes the above cri-
terion ensures both the clustering of class members and increased
separation between classes. The fisher criterion is maximized when
the projection vector vlda corresponds to the eigenvalues of the
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Fig. 2. A schematic of the observational data generation process
of MIs for ψ-types degradation models, described in Section 3.1.

matrixS−1

b Sw. Once the eigenvectors are calculated, they are used
to project the observations matrix to a new one Alda = A · vlda.
After generating the space Alda, a further step is needed to facil-
itate visual evaluation of the results and redundancy alleviation.
Alda ism-dimensional, and some dimensions may contain redun-
dancy [2], therefore, the PCA is used to reduce the dimensional-
ity of the feature space. Assuming W is the covariance matrix
of Alda, vpca and λ are the eigenvectors and eigenvalues of W .
The principal components can be found by sorting the eigenvec-
tors in descending order of the corresponding eigenvalues. The
p first columns of the sorted eigenvector matrix ˆvpca are used to
project Alda onto reduced dimensionality space Apca ∈ R

z×p.
The columns of Apca are linear combinations of the columns of
Alda that maximize the variance, and hence they are denoted as
the principal components.

Using vlda and vpca, the original MI feature space given by
alpha can now be transformed into a new space, given by

γ = α · vlda · vpca. (7)

To classify a test case ξ, its moment invariants are projected in the
same manner α is projected in (7), and then its nearest neighbor is
found using a distance measure.

4. EXPERIMENTAL RESULTS

We present two experiments to demonstrate the performance im-
provements of the proposed system. In the first experiment, we
formed a class system of 20 grayscale objects chosen from the
Amsterdam Library of Object Images database [7], and applied a
degradation model consisting of rotation and spatial scaling sup-
ported by bicubic-interpolation, and calculated their AMIs. Then,
using LDA, the AMIs are projected onto a space with maximum
separation of classes. We use the silhouette plot to evaluate how
well the data is clustered in each space. The silhouette plot quan-
tifies the closeness of a point in certain class to the points in the
neighboring classes by assigning a value in the interval [-1, 1],
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(b) AMI with LDA

Fig. 3. Silhouette plots for the original AMIs and the trained AMIs
by LDA. A value of 1 corresponds to wide separation and -1 does
to the complete overlap with other clusters.

(a) Reference image (b) Test image

Fig. 4. Example of POI-matching. The test image is translated and
rotated instance of the reference image.

where a value of 1 corresponds to wide separation and -1 corre-
sponds to an overlap with neighboring clusters. The silhouette
plots before and after LDA are shown in Figure 3 (a) and (b) re-
spectively. Clearly, Figure 3 (b) has more values closer to 1, indi-
cating better separation of classes.

The second testing benchmark for the proposed system is im-
age registration, which consists of two main operations: determin-
ing if a group of images are representatives of the same scene, and
combining them from multiple coordinate systems into a single
one. The first task involves finding points of interest (POIs) in a
test image and matching them to the POIs in a reference image.
The POIs are unique corners that can be detected using special-
ized algorithms, here the Harris corner detector [8], and a correct
registration requires correct matching between the reference and
test POIs.

We compare our method with MI-based image registration
system proposed in [3]. Each POI in the reference and test image
is represented as the MIs of the circular region of which the POI
is a center. POI-matching is then performed by finding reference
and test POI pair that minimize a distance measure. The experi-
ment consists of trying to match the test image shown in Figure 4
(b) to the reference image shown in Figure 4 (a). The test image
is the lower third section of the reference image, degraded with a
20-degrees rotation employing bi-cubic interpolation. An attempt
to register the test image using a radius of seven pixels and AMIs
is shown in Figure 7. Correct registration is indicated by a black
region in the difference image, corresponding to zero difference
between the reference and the registered test image. Clearly, this
is not the case with Figure 7 (a).

The incorrect registration is due to a false matching between
reference and test POIs, which might be attributed to the poor sep-
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Fig. 5. POI Feature space.
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Fig. 6. POI Feature Space with the processing of LDA/PCA.

(a) AMI (b) AMI with LDA/PCA
Fig. 7. Examples of image registrations by the MI feature descrip-
tors.

aration between POIs, as shown in Figure 5 (a). Applying a series
of rotations and spatial scaling degradations to each class results in
the feature space shown in Figure 5 (b), which validates the afore-
mentioned point, since decreased separation, and in some cases
overlap has occurred between some of the POIs. The dimensions
in both figures are the first three AMI moments.

We consider the aforementioned rotation and scaling transfor-
mations as training data, and Figure 5 (b) represents the first three
dimensions of the observation space A. We calculated the LDA
and the PCA projection vectors, and projected the original POI
feature space onto a new space. Using the first three principal com-
ponents, the new POI feature space is shown in Figure 6 (a)-(b),
where it is clear that the POI separation and clustering are signifi-
cantly improved. Performing the matching between the reference
and test POIs in the new space resulted in correct registration as
indicated by the black region shown in Figure 7 (b).

Table 1 summarizes the results of POI matching using the sys-
tem in [3] and the proposed system. Both systems were tested by
applying several distorted images, where the distortions involve
bi-cubic rotations and spatial scaling, and noting the percentage
of times the systems perform the POI matching correctly. As the
table shows, there is a significant improvement in the rate of suc-

Table 1. POI Matching Comparison
System in [3] Proposed

Avg. POI recognition 58.7% 87.6%
Max. POI recognition 70% 95%
Min. POI recognition 40% 75%
Avg. Pixel Displacement 0.2583 0.2305

cessful POI matching when the proposed system is used. In ad-
dition to that, the pixel displacement, calculated as the difference
between the coordinates of the reference and matched POI is re-
duced, increasing the alignment of the reference and test images
when combined to a single coordinate system.

5. CONCLUSIONS

We have presented a method for improving the robustness of moment-
invariants-based recognition systems. The robustness of the clas-
sification system is improved by subjecting the system to expected
degradations to generate observations which will guide the linear
discriminant analysis to maximize the separation between classes.
Principal component analysis is then applied to minimize the re-
dundancy and aid with data visualization. Performance improve-
ment is demonstrated with the application of image registration
under the degradation caused by digital rotation and scaling. The
results show that the trained system has better class discrimination,
and is able to correctly register images that the untrained system
is not able to. The proposed method can be applied in other image
recognition applications with various degradation sources.
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