
BLIND IMAGE COMPRESSION HISTORY DETERMINATION
USING DYNAMIC THRESHOLDING

Robert Grou-Szabo, Tadashi Shibata

Department of Frontier Informatics, Graduate School of Frontier Science,
The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8561 Japan

grou@if.t.u-tokyo.ac.jp - shibata@ee.t.u-tokyo.ac.jp

ABSTRACT

In certain situations, a software application or even a
hardware processing unit receives image data in a raster
format, such as in a bitmap file, without any knowledge of
what, if any, prior processing has occurred to it. If further
processing is intended, it can be helpful or even necessary to
know of an image’s processing history. Using a directional
edge detector with a dynamic thresholding technique, an
algorithm as been developed that can determine an image’s
compression history using only the raster bitmap
information. By accentuating an image’s block boundaries
and then subsequently comparing the edge count at the
block boundary with the edge count the pixel row right
below, the compression history of images compressed up to
a Quality Factor of 100 can be determined.

Index Terms— video signal processing, image coding,

noise filter

1. INTRODUCTION

There are several examples of both hardware and
software applications where it can be useful to know the
compression history (CH) of an image when all we have is a
rasterized data format such bitmap or a data stream from an
external RAM. For example in the case of rendering an
image using a JPEG [10] compressed image for texture
mapping that will be stretched or tiled or else when pasting
a copied image directly into Word or PowerPoint from the
Windows clipboard or when image data is to be converted
to Postscript then sent to a printer driver, or simply when
trying to recompress an image a second time. In each of
these examples, block artifacts can be amplified,
exaggerated or made to appear more obvious. However if it
is known beforehand that the image has previously been
compressed and contains block artifacts, measures can be
taken and parameters changed to improve processing and
possibly obtain better results.

Although our research borders on the “removal of block
artifacts”, for which numerous papers have been written, we
are only interested in determining an image’s Compression
History Estimation (CHEst). Another of our main concerns

is to develop a “hardware-friendly” approach while doing
this, where the only information available is the
decompressed bitmap information of a Monochrome image.

In addition, although there is no official standard value
for the block size of a JPEG encoded image, we will assume
that the grid is a regular pattern of square 8 by 8 pixel
blocks. Thus, the only compression parameter to affect the
image quality is the quantizer table. i.e. the quantizer step
size applied to the DCT coefficients. The algorithm
described in this paper does well even with images that have
been compressed with a Quality Factor (QF) of 100 (where
every DCT of the quantization table coefficient equals 1).
Even when an image has been compressed with a QF = 100
does not mean that there is no loss. Even the lowest JPEG
compression ratio (i.e. biggest file size), will still leave its
mark on an image. So this algorithm can determine the CH
at any compression ratio. Humans can identify objects from
simple line images such as etchings or cartoons. Which
leads us to believe that edge information is essential to the
Human Visual System (HVS), even more so than color or
light intensity is. So it stands to reason that edge detection is
very important for image interpretation and identification.
Therefore with this kind of reasoning we based our
algorithm largely on edge detectors.

2. PREVIOUS WORK

Many papers have been put out proposing algorithms to
remove JPEG block artifacts, most of which work using
wavelets or Fourier transforms [2] or else need to use the
DCT coefficients [4], [5]. However our research is different
in that it focuses on detection using only uncompressed
bitmap-like data. Moreover, our goal is to use the system in
a hardware application, in that case an edge detector is
much easier to implement and occupies less surface area
than an FFT operator does. Similar research is being done
by Fan and Queiroz in [1] where they identify an image’s
compression history from a bitmap image as well as
estimate the quantizer table. However their algorithm uses
block’s difference of neighbors to detect a JPEG signature
and although it is a simple and computationally fast
algorithm, its very simplicity causes it to be sensitive to
noise and distortion.

10051-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

3. PROPERTIES OF JPEG ENCODING

The block artifacts or the blurring around sharp edges
we see in reconstructed compressed images and video
sequences are the result of coarse quantization and the
truncation of high frequency coefficients. This is known as
the Gibbs phenomenon and also appears as ringing noise or
mosquito noise in images that have been encoded using a
low bit rate. High frequency coefficients represent less
visual information and can usually be discarded with little
or no visible effect to the final image since a DCT operator
essentially concentrates most of a signal’s energy into just a
few coefficients.

The JPEG group has come up with a Quality Factor
(QF) in an attempt to quantify an image’s quality after it has
been compressed. A quality factor (QF) of 100 sets all the
quantizer step sizes to unity and thus yields the best image
quality JPEG can possibly achieve. It should be noted that
even with the highest quality factor where each coefficient
is ‘1’, some information will be lost since the real DCT
outputs are typically not integers. So although not visible, a

JPEG signature still exists in a compressed image regardless
of compression ratio.

4. COMPRESSION HISTORY DETERMINATION

4.1. Algorithm

References in this section refer to Figure 1. Once the
image data is made available in a raster format, either as a
bitmap file or read in from a RAM (a), the first step is to
apply an edge detector to the image (b). Several different
edge detector algorithms have been tested and we have
found that simple directional edge detectors such as Prewitt
or Sobel obtain better results as opposed to other more
complex algorithms such as Canny, Zero-crossing or Marr-
Hildreth, possessing extra steps such as contour following
attempting to reduce the probability of false contours.
Simple four directional edge detectors work best because
basically we are trying to, statistically speaking; compare
the number of edges at block boundaries with the number of
edges one row above or below the block boundary.

Horiz Edge
Detector at
Thresh = T

Image
Height
in Pixels

Horizontal
summation of
edge count for
each pixel row

0 T

9 Pixel row

Pixel row 24
Pixel row 23

Pixel row 8
Pixel row 7

a

b c d

e

f
g

h i

Pixel row 16
Pixel row 15

8 7 11 6

Threshold

Edge
count

255

Legend:

a) Original Image

b) Horizontal Edge map at threshold = ‘T’

c) Horizontal projection histogram of edge

map

d) Cumulative sum of edge map projection

e) Cumulative sum of edge count for every

threshold value

f) Vertical sum of the pixel row at block

boundary plus multiples of block size up to

ImageHeight, at each threshold value

g) Edge count distribution for every

threshold value, at block boundary and at

one pixel row below block boundary

(compressed image)

h) Edge count distribution for

uncompressed image

i) Edge count at each pixel row for a

compressed image and an original image

with the jpeg block boundary positioned in

mid-graph

Image after
compression

Image without
any compression

10

Fig. 1 Compression history determination algorithm

1006

First the edge detector is applied (b) using a threshold
value of zero ‘0’. At this point, essentially everything
becomes an edge and the resulting edge map looks like
Gaussian noise. Then we slowly increase the threshold
value of the edge detector. As the threshold is increased,
less and less edges appear in the edge map and a clearer
image starts to appear. Thus the edge detector is passed over
the image with a threshold value ranging from 0 the lowest
numerical value for a pixel, to 255 the highest value.

For each threshold value, after the edge map is generated
using a horizontal edge detector, a horizontal summation (c)
of the edge map produces a vector that is as long as the
image is high (d). One vector element for each pixel row of
the image. Then, as every threshold value is used, from 0 to
255, the result is a matrix that is 256 x ImageHeight (e).
This matrix contains all the edge information at every
threshold value, for ever pixel row. The information that
interests us are the rows that run along the JPEG block
boundaries. Although there is no official standard value set
down in the JPEG documentation, we have assumed that a
block is 8 pixels high.

Next, we add together all the edge data for one threshold
value, at every block boundary row. This means, for a
threshold value of ‘T’, we sum together all the edge
information for every multiple of the block size (f). More
practically, what this means is that for one threshold value,
we add together all the edge information for line 8 plus
every multiple of block size, thus row 8 + row 16 + row 24
etc. The result of this summation is all the cumulated edge
information at one particular threshold value of every
multiple of the block boundary. The same is done for one
row below the block boundary, i.e. row 7 + row 15 + row
23 etc. Effecting this summation for each threshold value,
we obtain an edge map histogram (g) spanning from 0 to
255 representing all the edge information at the JPEG block
boundary, as well as one pixel row below the block
boundary.

By comparing the two edge map histograms from pixel
row 7 and 8, we can observe that there is much more edge
data on the block boundary when compared to one pixel
row below it. The reason being, that JPEG block artifacts
remain detectable by an edge detector much longer then
edges contained in the scene, especially when cycling
through the threshold values. We are using the statistical
probability that JPEG edges, when looked at from a wide
array of threshold values, will generate more edge data than
regular edges in the scene.

We can see in (h) the result of an image that has not
been JPEG encoded, keeping in mind that at this stage, the
goal is to determine whether or not an image has been
compressed. So if the result after passing an image though
the algorithm looks like (g) then the image has at some time
in the past been compressed and if the result looks like (h)
then it’s safe to assume that it has not.

4.2. Limitations

There are a few limitations to the algorithm. The first is
that to be effective, the image has to be of a certain height.
The height determines how many jpeg blocks an image has,
and the more rows there are, the more statistical samples can
be taken when using a horizontal edge detector. But this rule
also applies to any statistical analysis where you need a big
enough sample space to get an accurate study. Images
smaller than 64 pixels in height tend to be blocky in
appearance for that reason we have limited our test samples
to images larger than 64 pixels high.

The second limitation is when the algorithm tries to
analyze a computer generated image where an edge runs
exactly along a pixel row so as to create a discrepancy in the
edge count of one pixel row over another. This would be
almost impossible to occur in an image taken from a real life
situation. Any straight edge in an image would almost
certainly cross over to one if not several other pixel rows.

5. EXPERIMENTAL RESULTS

Figure 2 shows the behavior of the edge count at each

pixel row. In 2a, we see that there is no difference in edge
count whether at the jpeg block boundaries or not, however
2b illustrates the behavior pattern that occurs once an image
has been compressed and then assessed by the algorithm.

87 6 5 43 21

Edge
count

Pixel
row

87 6 5 43 21

Edge
count

Pixel
row

Fig. 2 Behavior of Edge count at each pixel row for
a) uncompressed images and b) compressed image

b)

a)

1007

The difference in edge count ‘ ’ can also give an idea of the
compression ratio used when compressing the image.
Images compressed at a high QF will still exhibit this kind
of slope aspect but the difference in edge count will be
much lower than images compressed with a low QF (i.e.
small file size).

Figure 3 shows the result of the algorithm applied to 3
types of images; the four graphs show the resulting edge
count when the images are compressed using different
compression ratios. From left to right the JPEG compression
ratios used are: QF of 100, 95, 85 and 75. The X axis
represents the pixel rows 5, 6, 7... to 12 with pixel row 8
right at the mid point, the Y axis is the edge count for that
pixel row. The images used were taken from various
databases however special care was needed in certain cases
since it might have been possible that an image having
previously been passed from bitmap to JPEG and back to
bitmap again would corrupt the results. Therefore images
that were certain to have never been previously compressed
at anytime were used. As well, the images used were all
larger than 64 pixels high; most were at least 512 pixels
high.

6. CONCLUSION

An algorithm to determine an image’s compression
history has been described. In some cases the maximum
peak is located at the pixel row 8 which represents the
bottom of the jpeg block boundary, however sometimes it
was located at pixel row 9 which is the same as pixel row 1,
i.e. the top of the jpeg block boundary. The confidence
interval for this algorithm to determine any image’s
compression history mainly depends on two aspects of the
image. The first is the image height which simply gives
more or less statistical points for comparison.

The second is edge information density. A relatively
smooth looking image with little or no edge information
such as a sky or snow field will reveal more JPEG edge
artifacts whereas an image loaded with edge information as
in a crowded sports arena will confuse the algorithm and
result in lower confidence interval.

7. REFERENCES

[1] Zigang Fan and Ricardo de Querioz, “Identification of Bitmap

compression history: JPEG detection and quantizer estimation”, IEEE
Transaction on image processing, Vol. 12, No. 2, pp. 230-235,
February 2003

[2] Ramesh Neelamani, Ricardo de Querioz, Zhigang Fan and Richard G.
Baraniuk, “JPEG Compression history estimation for color images”,
IEEE Transaction on image processing, Vol. 15, No. 6, pp. 1365-1378,
June 2006

[3] Hao-Song Kong, Anthony Vetro and Huifang Sun, “Edge map guided
adaptive post-filter for blocking and ringing artifacts removal”, in Proc.
ISCAS, pp. 929-932, May 2004

[4] Shizhong Liu, Bovik, A.C., “Efficient DCT-domain blind
measurement and reduction of blocking artifacts”, IEEE Transactions
on Circuits and Systems for Video Technology, Vol. 12, No. 12, pp.
1139-1149, December 2002

[5] Irina Popovici and Wm. Douglas Withers, “Locating edges and
removing ringing artifacts in JPEG images by frequency-domain
analysis”, IEEE Transaction on image processing, Vol. 16, No.5, pp.
1470-1474, May 2007

[6] Zhou Wang, Alan C. Bovik and Brian L. Evans, “Blind measurement
of blocking artifacts in images”, in Proc ICIP, pp. 981-984, September
2000

[7] Masakazu Yagi, Tadashi Shibata, “An Image Representation
Algorithm Compatible to Neural-Associative-Processor-Based
Hardware Recognition Systems,” IEEE Trans. Neural Networks, Vol.
14, No. 5, pp. 1144-1161, September 2003

[8] Tadashi Shibata, "Intelligent Signal Processing Based on a
Psychologically-Inspired VLSI Brain Model," IEICE Trans.
Fundamentals, Vol. E85-A, No. 3, pp. 600-609 (2002)

[9] Zhou Wang and Alan C. Bovik, “A universal image quality index”, in
IEEE Signal processing letters, Vol. 9, No. 3, pp. 81-84, March 2002

[10]JPEG compression reference ONLINE

Fig. 3 Edge count of dynamic threshold edge detection

b

c

a

1008

