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ABSTRACT

In this paper, we develop a low complexity algorithm for 
spatial overlap detection and characterization that operates 
directly on the bitstream of motion-JPEG compressed video.  
Its low complexity and the fact that it does not require video 
decoding at the sensor nodes make it well suited to multi-
view distributed video coding applications for wireless 
sensor networks.   

Index Terms— Distributed video coding, multiview 
video coding, bit-domain processing, JPEG-based overlap 
detection, sensor network coding, morphological filtering

1. INTRODUCTION 

While the information theoretic roots of distributed source 
coding go back to the 1970s with work of Slepian and Wolf 
and Wyner and Ziff [1], [2], it is only in recent years that 
practical algorithms have been developed that use the parity 
bits generated by channel codes to correct for differences 
between the actual sensed signal and an approximation of 
that signal derived from side information [3].  The advent of 
such algorithms combined with a surge in interest in 
distributed sensor networks has lead to a great deal of recent 
research in the area and has  resulted in an offshoot of this 
research concept called distributed video compression 
(DVC) [4], [5].    
 Our interest here lies in the problem of multi-view 
distributed video coding [6]-[10].  In this application, one is 
performing distributed source coding in the classical sense 
by trying to exploit any correlations that might exist 
between spatially separated cameras.  As an example, 
consider two video cameras located some small distance 
apart: clearly, there will be correlations whenever the 
cameras’ fields of view overlap.  
 The major focus of recent work in this area has been on 
the problem of synthesizing the side information in the joint 
decoder [6]-[10].  In every case, it is assumed that the 
individual encoders are unable to communicate amongst 
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themselves and that the decoder must extract frame 
correlations without assistance from either encoder.   The 
fundamental difficulties with all of these approaches include 
poor side information synthesis at the decoder, inefficient 
parity bit generation for the Wyner-Ziv encoder, and real-
time limitations of decoder feedback for rate control. All of 
these limitations of the currently accepted paradigm have 
led us to consider an alternative: allow passive 
communications between video sensor nodes.  What we 
mean by passive is simply to allow nodes to listen to the 
communications being sent from other nodes to the base 
station (where joint decoding is performed).  Our goal here 
is still to perform very low complexity video encoding at 
each node, but to allow nodes to take advantage of what 
they might ‘overhear’ from nearby nodes.  For example, one 
node might be able to determine by passively monitoring 
and analyzing the communications of a nearby node that a 
portion of its camera’s field of view is currently overlapping 
that of the other node’s camera.    
 The major difficulty with the passive communications 
paradigm described above is encoder complexity.  
Specifically, a sensing node mode must spend energy as 
well as computational processing power to listen to and 
analyze the signals received from nearby sensors.  The 
process of ‘listening’ entails, in general, receiving the RF 
signal, demodulating it, and finally decoding it to 
reconstruct the video frames.  Once decoded, the intercepted 
frames must then be compared to frames captured locally to 
determine correlation (e.g., frame overlap).  Finally, this 
correlation must be exploited in the encoding process to 
create a reduced-rate bitstream describing the local frame.  
 The focus of our work here is on efficiently 
determining the overlap between camera fields of view at 
one of the cameras by analyzing frames in the compressed 
bitstream domain.  This has a number of advantages over 
working in the pixel domain: (1) the need to decode the 
passively captured video bitstream is eliminated saving both 
power and computational bandwidth, (2) far less 
information needs to be processed since overlap detection is 
performed in the compressed domain, and (3) the final 
system should be more robust to small shifts in the fields of 
view since both the frame overlap calculation and the 
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dependent encoding are performed in the same domain (i.e., 
the bitstream domain).  While the motion-JPEG 
compression used here is not state-of-the-art, it does most 
certainly satisfies the requirement that the video encoder 
should have low complexity, and the proposed approach can 
be extended to I-frame-only MPEG-1 and MPEG-2 as well.   

Figure 1: Block diagram of detection overlap detector. 

2. BIT-DOMAIN SPATIAL OVERLAP DETECTION 

The details of the JPEG image compression algorithm are 
fully described in [11], but what is important in our 
application is that it compresses 8x8 pixel blocks of the 
image in a largely independent manner.  Thus, one can view 
the information in each block as being represented by the 
number of bits used to encode it.  Consequently, the pattern 
created by the bit counts of the 8x8 pixel blocks that form a 
region of a video frame provide us information about the 
spatial composition of that region which can, in theory, be 
used for spatial matching without needed to decode the 
video frame.    
 We henceforth assume that the number of bits used to 
encode each 8x8 block of the image is extracted directly 
from a header included with the modified motion JPEG 
frame. We’ll call this the preponderance number (PN) for 
the block.  Because of the way JPEG is encoded, the PN 
loosely characterizes the frequency content of the block.  If 
the block contains a lot of high frequency energy, then its 
PN is high; if it does not, then its PN is low. Using this 
information, we then can match regions in overlapping 
images using the patterns formed by their preponderance 
numbers. This is preponderance of bits detection or PBD for 
short.  
 Figure 1 shows the block diagram of the proposed PBD 
scheme.  First, gray-level slicing [1] is performed on the PB 
image i.e. the 2-D array p(x,y) containing the preponderance 
numbers.  Experimentally, we have found that slicing 

around the mean of the entire PB image produces the best 
result: i.e.,   
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 After the gray-level slicing, we remove isolated areas of 
1s and 0s by using the morphological operation of closing.  
To implement the closing operator, dilation is first 
performed using a 3x3 rectangular structuring element 
followed by erosion with the same structuring element.  The 
purpose of this process is to accentuate changes in 
neighboring preponderance numbers.  Ideally, it will 
separate the video frame into regions of high and low 
frequency content.  The steps described thus far can be 
implemented entirely using binary and integer operations 
with the need to store only zeros and ones.  
 The detection process applied next attempts to match 
up related high and low frequency regions in the two frames 
being evaluated.  In developing overlap detection for Fig. 1, 
we assume that a small amount of side-information is 
available describing the relative placement of cameras.  
Specifically, we assume here that the only information 
available is which side camera 1 is on relative to camera 
2—information that can easily be extracted from relatively 
imprecise non-differential commercial GPS units.  This 
allows us to narrow our overlap search, but it is not 
fundamentally required for our approach to be effective. 
Since we know how the cameras are positioned relative to 
one another, we also know which sides of the images might 
possibly overlap.  Consequently, we start our detection 
process in the top-left corner of the rightmost camera image.  
A block size sqs is specified, good values for which have 
been found experimentally to be somewhere between 20 
and 30.  A block B of size sqs  sqs is then extracted from 
the top-left corner of the rightmost camera.  The mean 
absolute error (MAE) relative to the PN values of the 
leftmost camera image is calculated using (2) below and the 
position with the minimum MAE is determined to be the 
top-left corner of the overlap region. 
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3. EXPERIMENTAL RESULTS 

This section illustrates the performance of the proposed 
PBD scheme experimentally.  First, we evaluate the number 
of pixels necessary to accurately identify the overlapping 
portions of two different frames.  The two frames were 
captured from camera positions 13 centimeters apart and 
with a 6 degree change in the viewing angle. Ten such pairs 
of images were produced for this experiment, each 
translated relative to the same real-world scene. This 
experiment models a true environment by simulating the 
different viewing angles for multiple cameras. In each 
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image frame, the overlapping region is uncontrolled and 
varies between 40 and 128 pixels. Using a matching 
window size that is 16% of the total image size (a 35x35 
window in the PN domain) an accurate match was made 
82% of the time.  By increasing the relative window size to 
27% (a 45x45 window in the PN domain), we decrease the 
probability of an incorrect match to only 5%.  

Table 1. Percentage of correct detection for the 
Ballroom sequence. 

BALLROOM Matching Window Size 
Camera 10 20 30 40 

1 0.60 0.86 0.84 0.82 
2 0.60 0.92 1.00 0.88 
3 0.86 0.98 0.96 0.92 
4 0.80 0.96 0.94 0.74 
5 0.60 0.86 0.90 0.56 
6 0.36 0.80 0.94 0.56 
7 0.64 0.96 1.00 0.70 

Table 2. Percentage of correct detection for the Vassar 
sequence.

VASSAR Matching Window Size 
Camera 10 20 30 40 

1 0.86 0.90 1.00 1.00 
2 0.26 0.82 1.00 1.00 
3 0.04 0.80 1.00 1.00 
4 0.62 0.98 1.00 1.00 
5 0.52 0.90 1.00 1.00 
6 0.18 0.76 1.00 1.00 
7 0.74 1.00 1.00 1.00 

Table 3. Percentage of correct detection for the Exit 
sequence.

EXIT Matching Window Size 
Camera 10 20 30 40 

1 0.14 0.26 1.00 1.00 
2 0.08 1.00 1.00 1.00 
3 0.00 1.00 1.00 1.00 
4 0.00 1.00 1.00 1.00 
5 1.00 1.00 1.00 1.00 
6 0.70 0.96 1.00 1.00 
7 0.46 0.24 0.86 0.98 

 A second experiment examines how the number of 
pixels used in determining the overlapping region affects 
the accuracy of the match.  This experiment uses the first 50 
frames of all three sequences from the MERL library [12] 
with the images from cameras 1 through 7 being compared 
to images from camera 0.  The matching window size was 
varied in order to demonstrate how the window size affects 
accuracy.  We declare that an accurate match has occurred 
whenever the detection scheme calculates the overlap to be 
within 8 pixels of the true overlap.  By using all three 
sequences, we our exercising the proposed detection 
algorithm over a diverse input set.  The experiment also 

examines how differing amounts of relative shift affect the 
detection performance.  In the Ballroom sequence, 
detectable pixel shifts range from 0 to 48; in the case of the 
exit sequence, the range is a much larger 0 to 208.  The 
results of Table 1 through 3 show that using a window size 
of 20 or greater produces an accurate detection over 91% of 
the time.  By observing the results in the tables and 
comparing them to their respective sequences, a few 
interesting patterns develop.  Both the Vassar and Exit 
sequence have large, low frequency areas with rigid 
structure.  When using a small window size, the algorithm 
does not perform well.  This is because very little high 
frequency structure is preserved in these small windows 
over large parts of a frame for these sequences.  As we 
increase the window size, however, the results improve and 
quickly overtake those of the Ballroom sequence because 
the rigid structures in these sequences allow for very 
accurate matching compared to the less-rigid human forms 
in the Ballroom sequence.  Another aspect of the detection 
scheme becomes apparent when examining the results for 
the Ballroom sequence.  Specifically, we see that the 
accuracy improves as the window size increases up to 30, 
and then begins to decrease again at 40.  We believe this is 
due to the addition of more high frequency elements (e.g., 
people), the positions of which are inconsistent between 
different camera frames.  For all of the MERL sequences, a 
window size of between 20 and 30 appears to result in the 
most reliable detection.  
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Figure 2: Block dimension for match versus noise variance. 

 A last experiment was also performed that was 
designed to characterize the number of pixels necessary to 
properly identify the overlap between an original image and 
that image with added Gaussian noise.  The minimum 
number of pixels necessary to make an accurate match for 
different noise levels is shown in Fig. 2.  We see from the 
figure that the proposed detection scheme is moderately 
resilient to additive Gaussian noise.  In most instances, the 
PBD algorithm requires less than a 25x25 PN block or 
about 8.3% of the 800x600 image.  As the variance of the 
Gaussian noise increases, at some point the number of 
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blocks required for accurate detection must also increase.  
We believe that the number of pixels required to accurately 
detect an overlap is related to the useable structure in the 
preponderance domain. This hypothesis is supported by Fig. 
3 which shows the histogram of the block dimensions 
required for correct detection over a (0, 0.3) range of 
Gaussian noise variances.  By observing the histogram, it is 
apparent that most detection occurs in clusters of PN block 
sizes; for example, the first cluster is between 152 and 216, 
the second between 300 and 408.  By comparing this 
clustering behavior to the spatial domain structure of the 
image, we can see how that structure affects detection in the 
bit-domain as the detection window is expanded. As the two 
images begin to differ from each other more greatly due to 
higher levels of additive noise, more structure and 
consequently more PN blocks are needed to accurately 
detect the overlap. The detection window must then expand 
until it gathers in enough information to make an accurate 
decision.  Of course, some parts of the image may not 
provide enough information to counteract the increase in 
variance; these areas usually have little high frequency 
content and result in PN block sizes where little overlap 
detection occurs: i.e., the blank spaces in the histogram of 
Fig. 3. Interestingly, we have also noticed that the number 
of blocks used in detection roughly follows the relative 
entropy for the pixels that map to the regions within the 
image where the bitstream blocks are being evaluated for 
overlap.  By comparing the histogram to the relative entropy 
as shown in Fig. 3, we notice that although the magnitudes 
are very different, the histogram follows the basic shape of 
the relative entropy. For example, around the 300 and 350 
pixel block sizes, the relative entropy has a spike and the 
histogram seems to follow it.  The fact that the histogram 
follows the relative entropy curve further indicates the 
utility of bit-domain PBD for extracting information about 
spatial structure of images.  

4. CONCLUSIONS 

In this paper we have introduced a novel approach for 
detecting spatial frame overlap directly from compressed 
JPEG bitstreams.  The preponderance of bits detection 
scheme that has been proposed here to perform this 
detection task is being developed to support low power, low 
complexity distributed video coding and is designed to be 
simple enough to operate in a remote video sensing node, 
using information captured passively from other nearby 
sensors in the network.  From the experimental results 
presented here, we see that the method appears to be 
effective.  Our future research in this project area will focus 
on using the extracted overlap information to encode frames 
from one sensor node conditionally with respect to the 
correlated information sent from the other node. 
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entropy. 
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