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ABSTRACT 

It is a fascinating yet challenging problem to accurately and 
efficiently localize regionally distinct features between face 
groups in multi-dimensional signal processing and analysis. 
Given a data with unknown distribution and small sample 
size, we propose a new statistical analysis framework using 
hybrid randomization (i.e., permutation) tests to improve 
the system’s efficiency in identifying distinct features. The 
proposed method fits the nonparametric distribution of the 
test statistic with Pearson distribution series. We bypass the 
tedious online randomization via calculating the first four 
moments of the permutation distribution. This can reduce 
the computational complexity from O(n!) to O(n2) over 
traditional methods for the modified Hotelling’s T2 test 
statistics. Experiments on simulated data and 3D face 
analysis demonstrate the efficiency, accuracy and 
robustness of the proposed approach.  

Index Terms— 3D face analysis, feature selection, 
randomization test 

1. INTRODUCTION

Machine learning methods have been widely used to 
identify important features for statistical pattern 
classification, with broad applications in biometrics 
including human face, gender, age and ethnic recognition. 
Recently, researchers have been working on 3D data or 
other multi-dimension/multi-modality signal analysis as 
opposed to traditional static image-based recognition [1]. 
This demands accurate and efficient algorithms to detect 
distinct features between data groups since the redundant 
information carried in the original high dimensional data 
may greatly degrade the performance of machine learning 
algorithms. Discriminate analysis [2] or analysis of variance 
(ANOVA) selects feature vectors that are consistent within 
a class but have a large separation from other classes of 
objects. These methods work well when the size of the 
dataset is large so that the distributions of features can be 
approximated by Gaussian. However, multi-dimensional 
data are often carried out with small sample size, as 3D face 

data collection requires expensive acquisition devices such 
as laser scanner and structure light based reconstruction 
system. Tedious post processing is also required to build the 
vertices correspondence that is critical for recognition or 
synthesis tasks [1, 3, 4]. 

 In this paper, we focus on the 3D face group analysis 
for two classes, though our method can be extended to 
multi-class cases. At each corresponding position on the 
face surfaces, we test whether there is a significant mean 
difference between location vectors (3D coordinates of the 
face vertexes) of two groups. If a hypothesis test leads to a 
p-value smaller than the pre-chosen -level, we reject the 
null hypothesis and conclude that a significant shape 
difference exists at this face location.  

 For face surface data with small sample size and little 
information about the distribution of location vectors, 
nonparametric approaches such as randomization tests, i.e., 
permutation tests, provide a flexible and robust alternative 
to Gaussian-theory inference. Randomization tests only 
require exchangeability but no parametric distributional 
assumptions, and they have been successfully used in 
biomedical image analysis [5, 6, 7, 8]. The null hypothesis 
can be accepted or rejected based on the permutation 
distribution of the test statistic. Permutation distribution is 
created by repeatedly permuting the group labels of samples 
and calculating the test statistic for each permutation. The 
p-value is then the proportion of permutations giving a 
value of the test statistic as or more extreme than the 
observed value. There are three major approaches to 
construct the permutation distribution [9]. First, exact 
permutation enumerates all possible arrangements. Due to 
the factorial increase in the number of permutations with the 
number of samples, the computational cost is the main 
disadvantage of the exact permutation. The second 
approach, random permutation, provides an approximate 
permutation distribution based on random sampling from all 
possible permutations. This technique has the problem of 
replication and causes more type I errors. The third method, 
permutation distribution approximation uses the analytical 
moments of the exact permutation distribution under the 
null hypothesis. This approach has two main limitations. 
For some special scenarios, the moments of the exact 
permutation distribution do not actually exist. For the 
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scenarios that these moments exist, they are usually difficult 
to obtain.  

In this work, we propose a general theoretical method 
to derive moments of permutation distribution for any linear 
test statistics on multivariate data. Here, the term “linear test 
statistic” refers to a linear function of test statistic 
coefficients, instead of that of data. Given the first four 
moments, the permutation distribution can be well fitted by 
Pearson distribution series. The p-values can then be 
estimated from the fitted Pearson distribution without any 
real permutation. The main advantages of the proposed 
approach are: 1) It achieves computation efficiency by only 
calculating the analytically derived first four moments of 
exact permutation distribution without any real permutation. 
Given the sample size n1 = n2 =21, and the number of 
surface locations m = 8000, m×(n1+n2)!⁄n1⁄n2!≈4.4×1015

permutations are needed for an exact permutation test, or 
m×20000 = 1.6×108 for random permutations, which is 
eliminated in our method. 2) Our hybrid permutation 
method achieves good robustness and high accuracy in 
addition to its efficiency.

2. HYBRID PERMUTATION 

2.1. Pearson Distribution Series 

The Pearson distribution series (Pearson I ~ VII) is a family 
of probability distributions that are more general than the 
normal distribution [7]. It covers all distributions in the ( 1, 

2) plane including normal, beta, gamma, log-normal and 
etc., where distribution shape parameters 1, 2 are the 
square of standardized skewness and kurtosis measurements, 
respectively. Given the first four moments, the Pearson 
distribution series can be utilized to approximate the 
permutation distribution of the test statistic without 
conducting real permutation.  

2.2. Theoretical Derivation of Moments 

In order to approximate the permutation distribution with 
Pearson distribution, the moments of the exact permutation 
distribution need to be computed. Let X=[x1…xn]T be an 
univariate data of n observations, T(X, ) = CTPX = ic (i)xi
be the linear test statistic after permutation, (i) be the 
permutation operation, and C=[c1…cn]T be an n×1 test 
statistic coefficients vector. The permutation matrix P is a 
matrix that has exactly one entry 1 in each row/column and 
0's elsewhere, and it is obtained by permuting the rows of 
an identity matrix according to some permutation of the 
numbers 1 to n. The r-th conditional moment of T(X, ) can 
be derived as: 

1

( ) ( )
, 1

1 1( ( , ) | ) (( ) ) ( ) ( )
! ! k k

r

r
r T r r

i i i i
i i i k

E T X X E C PX c x c x
n nπ π

π π
π

=

= = = ∏

1 1

( ) ( )
, ,1 1 1 1

1 1( ) ( ) .
! !k k k k

r r

r r r r

i i i i
i i i ik k k k

x c x c
n nπ π

π π= = = =

= =∏ ∏ ∏ ∏        (1) 

To compute 
( )

1

1
! k

r

i
k

c
n π

π =
∏ , it is natural to partition the 

index space {1 2 }rU n=   into 1 2

1 2

( , , , )

( , , , )

q

q L

U λ λ λ

λ λ λ ∈

, where  

{ }1 2 1 2 1 2 1 2( , , , ) : , , , ; ;q q q qL rλ λ λ λ λ λ λ λ λ λ λ λ+= ∈ Ζ ≤ ≤ ≤ + + + = , 
1 2( , , , )qU λ λ λ  means that all r  indices are permuted into 

q different numbers. Each number corresponds to iλ
indices. When 3r = , (1,1,1) (1,2) (3)U U U U=  , where  

(1,1,1)U is the set of 1 2 1 3 2 3{ }i i and i i and i i≠ ≠ ≠ with 3q =
and 1 2 3 1λ λ λ= = = , (1,2)U  is the set of  

1 2 3 1 3 2 2 3 1{ }i i i or i i i or i i i= ≠ = ≠ = ≠  with 2q =  and 1 1λ = , 

2 2λ = , and (3)U  is the set of  1 2 3{ }i i i= = with 1q =
and 1 3λ = . Since permutation is equally related to all r

indices, 
( )

1

1
! k

r

i
k

c
n π

π =
∏ is invariant in each category, we 

define it as moment coefficient 
1 2( , , , )q

a λ λ λ , if 
1 2( , , , )

1 2( ) q
ri i i U λ λ λ∈ . Thus, 

1 2
( , , , )1 2 11

( , , , )
, 1( , )

( ( , ) | ) ( ) .
q k

q rr

r
r

i
i i ki i U

E T X X a x
λ λ λ

λ λ λπ
=∈

= ∏        (2) 

 The proposed approach can be easily extended to 
multivariate case. Let the linear test statistic 

( , ) ,
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T X e xππ = , where ,( )i jX x=  is an n×m matrix 

with n observations on m variables, ,( )i jE e=  is an n×m test 
statistic coefficient matrix and (i,j) is a general 
permutation which permutes the row index i to from 1 to n, 
and column index j from 1 to m. Following the similar way 
as in Eq. (1), we obtain the conditional moments for the 
multivariate data as  
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conditional moment for multivariate case is: 
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All the a ’s can also be calculated by computer simulation 
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without analytical derivation. Note that the computation 
cost of data summation terms for the r-th moment in each 
index subspace can be reduced from O(n2r ) to O(n2). 

2.3. Moments for Modified Hotelling’s T2

Assume XA is an n1×m and XB is an n2×m matrices from 
groups A and B, respectively, where n1 and n2 are the 
number of observations in two groups, and m is the 
dimension of variables. Under multivariate normal 
assumption, Hotelling’s T2 is an optimal multivariate test 
statistic for testing the mean difference between two groups. 
The test statistic is defined as: 

2 11 2

1 2
( ) ( )T

A B pooled A B
n n

T X X S X X
n n

−= − −
+

. 

where 1 2

1 2

( 1) ( 1)
2

A B
pooled

n S n S
S

n n
− + −

=
+ −
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variance-covariance matrix, AX  and BX  are sample 
mean vectors of, and SA and SB are the sample 
variance-covariance matrices of groups A and B, 
respectively. 

 Since it is difficult to avoid real permutations with the 
pooled covariance matrix involved in Hotelling’s T2, we 
replace pooledS  with the sample variance-covariance 
matrix S over all the subjects of the two groups. This leads 
to a modified T* as below  
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Since it has been proved in Wald and Wolfowitz (1944) that 
the modified T* is a monotonic function of Hotelling’s T2, 
these two statistics result in the same permutation p-value.  
For the modified Hotelling’s T* test statistic in 3D case, let 
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The third and fourth moments can be obtained in a similar 
way [6]. 

3. EXPERIMENT

To evaluate the accuracy and efficiency of our hybrid 
permutation tests, we consider six simulated cases in the 
first experiment for testing the difference between two 
groups A and B. For group A, n1 observations are generated 
independently from Normal(0,1) in Cases 1-2, from 
Gamma(3,3) in Cases 3-4, and from Beta(0.8, 0.8) in Cases 
5-6. For group B, n2 independent observations are generated 
from Normal(1, 0.5) in Cases 1-2, from Gamma (3,2) in 
Cases 3-4, and from Beta(0.1, 0.1) in Cases 5-6. The design 
is balanced in Cases 1, 3 and 5 with n1 = n2 = 10, and 
unbalanced in Cases 2, 4 and 6 with n1 = 6, n2 = 18. 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
t_HP 0.01130 0.01133 0.0123 0.01378 0.01723 0.00181
t_RP 1.15841 1.14383 1.13693 1.12501 1.12620 1.13843
t_EP 4.43899 4.27950 1.29839 1.32407 4.13205 4.29486
p_HP 0.04991 0.13144 0.00101 0.02497 0.09083 0.08052
p-RP 0.04955 0.12695 0.0012 0.0242 0.0889 0.0818 
p_EP 0.04980 0.13016 0.00101 0.02508 0.09250 0.08033

Table 1. Comparison of computation costs and p-values of 
three permutation methods: hybrid permutation (HP), random 
permutation (RP) and exact permutation (EP). The t_HP, 
t_RP and t_HP denote the computation time (in seconds), 
and p_HP, p_RP and p_EP are the p-values of three 
permutation methods. 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Mean_ABias_HP8.79e-58.97e-69.54e-52.16e-46.79e-44.53e-4
Mean_ABias_RP2.82e-46.64e-52.14e-41.30e-32.78e-45.99e-4
VAR_ABias_HP 5.99e-81.34e-72.10e-63.66e-79.55e-79.78e-6
VAR_ABias_RP 1.98e-61.42e-71.41e-65.34e-61.05e-51.00e-5

Table 2. Robustness and accuracy comparison of hybrid 
permutation and random permutation across 10 simulations, 
considering the p-values of exact permutation as gold 
standard. Mean_ABias_HP and VAR_ABias_HP are the 
mean and variance of the absolute biases of p-values of 
hybrid permutation; Mean_ABias_RP and VAR_ABias_RP
are the mean and variance of the absolute biases of p-values 
of random permutation, respectively.  
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Table 1 and Fig 2 illustrate the high accuracy of our 
hybrid permutation technique. Furthermore, comparing with 
exact permutation or random 20,000 permutations, the 
hybrid permutation tests reduce more than 99% 
computation cost, and this efficiency gain increases with 
sample size. Table 1 shows the computation time and 
p-values of three permutation methods from one simulation. 
In order to demonstrate the robustness of our method, we 
repeated the simulation for 10 times in each case, and 
calculate the mean and variance of the absolute biases of 
p-values of both hybrid permutation and random 
permutation, treating the p-values of exact permutation as 
gold standard. In most cases, hybrid permutation is less 
biased and more stable than random permutation (Table 2), 
which demonstrates the robustness and accuracy of our 
method. 

   

-4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

true
fitted

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

true
fitted

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

true
fitted

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

true
fitted

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1

true
fitted

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

true
fitted

Figure 2. Cumulative distribution functions (CDF) of exact 
permutation (in red) and Pearson distribution fitting (in blue) 
results. Left Column: for Case 1 (top) and Case 2 (bottom); 
Middle Column: for Case 3 (top) and Case 4 (bottom); Right 
Column: for Case 5 (top) and Case 6 (bottom).   

               

               

Figure 3. Facial differences between Asian male and white 
male. Locations in red on the 3D surface denote significant 
face shape differences (significance level =0.01 with false 
discovery rate control). 

In experiment 2 on 3D face analysis, we choose 10 
Asian males and 10 white males out of the USF face 
database [10] to calculate their differences. Results from our 
algorithm in Fig. 3 show that significant differences occur 
at eye edge, nose, lip corners and cheeks. They are 
consistent with anthropology findings [11] and suggest the 
discriminant surface regions for ethnic group recognition. 

4. CONCLUSION  

We propose and develop a statistical 3D face analysis 
method by using novel hybrid randomization tests where 
the permutation distributions are approximated through 
Pearson distributions. The proposed method reduces 
computation cost considerably without loss of accuracy. 
General and analytical formulations for the moments of 
permutation distribution are derived for multivariate test 
statistics. The proposed hybrid strategy takes advantage of 
nonparametric permutation tests and parametric Pearson 
distribution approximation to achieve both 
accuracy/flexibility and efficiency. Note that the theoretical 
derivations described in this work are general and can be 
applied to any linear test statistics on multivariate data, not 
limited on the test statistics demonstrated in this paper. For 
future work, we plan to apply our hybrid permutation tests 
to multidimensional data for feature selection and 
discriminate analysis such as face gender and facial 
expression recognition. 
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