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ABSTRACT
 
An important measure in various stages of oil sand mining 
is particle size distribution (PSD) of oil sand particles. 
Currently PSD is found by time consuming manual 
inspection. An effective automation of PSD computation 
can play a significant role in improving the mining process. 
Toward this goal we propose an algorithm (snake-PCA) to 
detect oil sands from conveyor belt images, which pose 
considerable challenges to automated analysis. The novelty 
in snake-PCA is as follows. First, snake-PCA evolves a 
number of snakes based on a novel variation of gradient 
vector flow requiring only a point as initialization. Oil sand 
is then detected by applying a threshold on PCA 
reconstruction error of a novel pattern image formed on 
each evolved snake. We show the discriminative property of 
the proposed pattern image here. Also, our detection 
experiments with snake-PCA produce a PSD matching well 
with a manually found PSD. 
Index Terms—Gradient Vector Flow (GVF) snake, 
principal component analysis (PCA). 
 

1. INTRODUCTION

The world's second-largest oil reserve lies under Alberta, 
Canada, in the form of oil sand. It is estimated that 174 
billion barrels of oil of varying quality could be recovered 
from the sands, whereas in comparison Saudi Arabia, 
world’s largest oil reserve, possesses 251 billion barrels of 
oil. Alberta’s oil companies produce about one million 
barrels of oil per day in 2005 and it is expected to become 
double by 2010 [8]. 
      Oil sand mining can benefit significantly from particle 
size distribution (PSD) of the oil-sand particles at various 
stages of the process in which oil is separated from sand.  
The current approach of detecting oil sand particles is to 
manually inspect hours of video that is extremely 
exhaustive, tedious, time consuming as well as prone to 
error. As oil is becoming scarce and more expensive, oil 
sand companies are seeking automated means to compute 
PSD online, where the images will be captured by a video 
camera mounted over the conveyor belt and looking down 
at the belt.  
       Toward automated PSD computation, we propose to 
detect the oil sand particles from conveyor belt images by 

an algorithm we call snake-PCA the description of which 
follows shortly. Oil sand image is unique, and to the best of 
our knowledge, little research work has been carried out till 
date. These images are often poorly illuminated and noisy 
with various kinds of background (conveyor belt) clutter. 
Moreover, oil sand particles come in a variety of shape, size 
and texture. The apparent brightness of the individual object 
varies from object to object. Most of the times, objects are 
mixed with dirt and fine materials. Additionally, since the 
mine operates 24 hours a day, and the oil sand material 
needs to be analyzed outdoors, varying lighting and weather 
conditions play a significant role in their appearance in the 
image. The aforementioned factors constitute the main 
challenges to automatically segmenting the individual oil 
sand particles from these images. 

 (a) Oil Sand image                   (b) Histogram of  Fig. (a)  

           (c) Otsu [5]       (d)  Chan et al. [1]

      (e) Chan-Vese [2]          (g)  GVF snake [9]            
Fig. 1:   Results of different well-known segmentation methods on 

oil sand image. 
 Fig. 1(a) shows an example of an oil sand image. The 

associated intensity histogram shown in Fig. 1(b) is seen to 
be unimodal. As a result, Otsu’s global thresholding method 
[5] fails to segment oil sand particles as shown in Fig. 1(c).  
Chan et al.‘s [1] well-known locally adaptive variational 
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thresholding technique does not serve our purpose either as 
shown in Fig. 1(d). Next, we made an effort using the well-
known Chan and Vese’s [2] region based level set 
algorithm. However, as shown here in Fig 1(e), the 
algorithm fails to detect the oil sands, essentially because 
there is not much difference in gray level between objects 
and corresponding background pixels distribution. We also 
applied Xu and Prince’s [9] Gradient Vector Flow (GVF) 
snake after manually placing an initial snakes inside oil sand 
particles. The GVF snake results, even with manual 
initializations near oil sand boundaries, are also seen 
unsatisfactory (see Fig. 1(g)). These comparisons of some 
of the state-of-the-art segmentation algorithms on oil sand 
images immediately reveal difficulty of automated analysis 
here.
        To overcome the difficulty of automated segmentation, 
here we utilize a variation of GVF snake algorithm. In this 
variation, we impose a Dirichlet boundary condition while 
computing the GVF force field. This boundary condition 
encourages the initial snake to grow, so that if the initial 
snake is inside the object, eventually it will expand and 
delineate the object boundary. We also note that oil sand 
particle boundaries are usually characterized by dark-to-
bright intensity transitions going from inside to outside. 
(Although, the reverse transition is not very rare). We 
accommodate this prior information inside governing partial 
differential equation that computes the force field. A version 
of similar force field computation has been reported in Ray 
et al. [6]; however, we additionally use the directional 
gradient information here and we evolve the snake and 
compute the modified GVF in an interleaved fashion until 
convergence. This proposed modification makes the result 
of the snake segmentation quite insensitive to initial snake 
location, as demonstrated later. Thus to detect oil sand 
particles, we place a number of seed points on an image and 
evolve snakes from each of these seed points by the 
proposed snake algorithm.  
      Note that after the snakes are fully evolved, we need a 
validation mechanism in place that will discriminate 
between the snakes delineating the oil sand particles and the 
snakes clinging onto the conveyor belt and other clutter. We 
view this validation mechanism as an abnormality detection 
process and propose to utilize a novel pattern image 
constructed from each evolved snake. Our proposed pattern 
image is essentially formed by the area of the original image 
covered by thickening the snake contour with an equal 
width both inside and outside. Note that this pattern image 
is an annular ring. We cut this annular ring at a location and 
unfold it to a rectangular image for computational 
convenience. Next, we need a pattern matching technique to 
work with this pattern image. Motivated from the idea 
behind face recognition using eigen faces, fisher faces and 
laplacian faces [4] we utilize Principal Component Analysis 
(PCA) to reduce spatial dimensionality of this pattern image 

and use the PCA reconstruction error to detect oil sand 
particles. 

2. SNAKE-PCA ALGORITHM 

(a)     (b) 
Fig. 2: (a) Seeds (red circles) and evolved snakes. (b) PCA 

reconstruction errors of these snakes. 
2.1 Proposed algorithm 

Snake-PCA algorithm consists of three sequential steps: 
Step 1: Place seed points at uniform grid spacing over the 
image and evolve one snake using modified gradient vector 
flow from each seed point (see Fig 2(a)). The proposed 
snake evolution algorithm is described in Section 2.2. 
Step 2:  When all the snakes stop their evolution, form 
pattern images (see Section 2.3 for pattern image 
formation), one for each snake. 
Step 3: Do pattern matching (rather, abnormality detection) 
by principal component analysis (PCA). The snakes 
associated with pattern images producing PCA 
reconstruction errors below a threshold value are retained 
and recognized as oil-sands. Snakes delineating oil sand 
particles have typically lower PCA reconstruction errors 
(Fig 2(b)). 

2.2 Proposed snake algorithm 

Given a seed point (x0, y0) for the snake, our proposed snake 
algorithm first builds an edge map:  
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where I(x,y) is the image. The edge map  indicates only 
dark-to-bright intensity transitions on the image as seen 
from the point (x0, y0). Next, we compute a force field (u(x,
y), v(x, y)) by: 
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subject to the Dirichlet boundary condition: 
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where  is the initial snake contour (in our case, a small 
circle centered at (x0, y0)) and n(x, y) is the unit outward 
normal to the initial snake at (x, y). K is a user defined 
parameter controlling the degree of smoothness of the snake 
external force field (u, v). After computing (u, v) we use 
them to evolve a snake from the initial contour as in [9]. In 
fact we perform snake evolution and (u, v) computation in 
an interleaved fashion– first compute (u, v), then evolve a 
snake with (u, v) until convergence, next compute (u, v)
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again with previously evolved snake contour as , and so 
on, until finally there is no appreciable change in the area 
enclosed by the snake. 
      Fig. 3 shows that our proposed snake alogithm is quite 
insensitive to snake initialization compared to other snake 
algorithms. It has a broad capture range and it can capture 
contour from a seed point located inside an oil sand. 

Results of GVF 

Results of Balloon Force 

Results of Ray et al. [6] 

Results of Proposed Snake Algorithm 
Fig. 3: Initial, intermediate and final snakes are in red, cyan and 

pink colors respectively. 
2.3 Pattern image generation 

We choose a couple of images arbitrarily as training images 
and place a seed point (shown by a dot inside the oil sand 
particle in Fig. 4(a)) inside the oil-sand particles and we 
evolve our snake from each seed point. When the snake 
stops evolution around the boundary of the oil sand particle 
we consider an annular ring or band along the snake as the 
pattern image. This annular region forms in such a way that 
the snake passes along the medial axis of this annular ring. 
We unfold this annular band and make a rectangular pattern 
image (as in Fig. 4(b)) for computational convenience. The 
vector formed by the pixel gray value of the pattern image 
makes training data set for principal component analysis 
carried out in the next step.

              
(a)                                       (b) 

Fig. 4:   Proposed pattern image formation. 

    The existence of the prominent dark to bright transition 
(as in Fig. 4(b) where the top of the line is dark and bottom 
of it is relatively bright) across the boundary or contour of 
the oil-sand particle characterizes an oil-sand particle. Any 
dark to bright transition similar to the training pattern image 
in the annular band across any evolved snake determines the 
presence of oil sand particle in the test image.     

Fig. 5: Scree plot. 

(a)

(b)
Fig. 6: (a) Snakes 1, 4 and 5 correspond to oil sands, while 2 and 3 
correspond to clutter. (b) PCA reprojection errors corresponding to 

1, 4 and 5 are smaller than those for 2 and 3, for the first few 
principal components. 

2.4 Principal Component Analysis (PCA) 

We have generated a training set of 51 oil sand contour 
samples from 10 oil sand images. Our training dataset for 
PCA consists of a two dimensional matrix where each 
column consists of the the column vector formed by the 
pixel colors (gray values) of a pattern image. Primarily we 
have carried out Bartlett’s sphericity test [3] on the training 
dataset and it shows that spatial dimensionality reduction 
through PCA is meaningful. 
      Our experiments on training data shows that only the 
first two principal components can be retained, since their 
eigenvalues are greater than unity [7]. Extended Bartlett’s 
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test [3] shows that only the first principal component 
corresponding to the maximum eigenvalue shown in Scree 
plot (Fig. 5) could be retained and it explains maximum 
percentage of variance (50% of the total variance).  
     The following instance also confirms that the larger 
principal components have better discriminative properties 
than the smaller components (Fig. 6). We have also carried 
out Kolmogorov-Smirnov test on PCA reconstruction errors 
associated with training pattern images and it shows that it 
follows a normal distribution. We have used 25th, 50th, 75th

percentile and mean of this training distribution as the 
thresholds to find PSD on the test set. 

3. RESULTS AND DISCUSSIONS 

We have used 100 oil sand images as the test set sampled 
randomly from an inspection system. In Step 1 of the snake-
PCA algorithm, we place 30 seed points at uniform spacing 
on each of 100 test images. Next, we follow steps 2 and 3 of 
the algorithm. Fig. 7 shows the performance of step 3, 
where each snake is classified as oil sands or clutter. Note 
that recall increases but precision decreases as PCA 
reconstruction error threshold increases. Detections on 4 
images at threshold 770 are shown in the Fig. 8.

Fig. 7: Recall, precision, accuracy and false positive rates 

Fig. 8:  Results of the proposed Snake-PCA algorithm 

        Finally the PSDs computed on the test set are shown in 
Fig. 9. Here we set the error threshold values at 25th, 50th,

75th percentiles and the mean of the training set error 
distribution. The Kolmogorov-Smirnov test shows that the 
test set PSDs obtained when thresholds are set at 50th

percentile and the mean are similar to the distribution of the 
manually found oil sand particles on the test 100 images. 

Fig. 9: Oil sand particle size distributions. 

4. FUTURE WORK

We have proposed a combination of snake and PCA 
algorithm on oil sand images. This is a general framework  
to segment and delineate objects boundaries from poorly 
illuminated  images.  We look forward to implementing this 
proposed method in other application domains, such as 
different medical/biomedical engineering applications.    
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