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ABSTRACT

This paper proposes a robust object tracking method in video

where the time-varying principal components of object’s ap-

pearance are updated online. Instead of directly updating the

PCA-based subspace using matrix decomposition, the sub-

space is updated by tracking on the Grassmann manifold. The

object tracker performs two alternating processes: (a) online

learning of principal component subspace; (b) tracking a mov-

ing object using the learned subspace and a particle filter.

Learning a PCA-based subspace is performed by treating prin-

cipal component decompositions as noisy measurements. The

measurements are mapped onto the Lie algebra of the Grass-

mann manifold. The direction of movement of the subspace

is then tracked in the Lie algebra using a Kalman filter. The

filtered output is then mapped back onto the Grassmann sur-

face to update the principal component-based subspace. This

produces a more reliable learning of the subspace.

Experiments have been conducted on face image sequences

where heads were tilted in variable speed, partial face oc-

clusion, along with changes in object depth and in illumina-

tions. The results and evaluations have shown that the pro-

posed method is robust against these changes when tracking

moving objects.

Index Terms— time-varying subspace learning, Grass-

mann manifold, object tracking, Kalman filter, particle filter.

1. INTRODUCTION

Eigen-tracking [1], or tracking with Principal Component Anal-

ysis (PCA), is a frequently used method for tracking object

regions in video. In the method, object tracking is accom-

plished by using lower-dimensional principal subspace of ob-

jects. While the principal subspace may well capture the lin-

ear variations in object appearances, it cannot describe the

significant changes in appearance due to, e.g., illumination

variations, shifting viewing angles, object deformation. Fur-

ther, due to the lack of training data, the learning process is
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often done online incrementally by using the tracked object

regions from the previous frames. In [2, 3] the object sub-

space is learned/updated directly from the sample covariance

matrix, and then treats the obtained subspace as the true one.

This will perform poorly when a small number of samples

(object regions) are used, or when the statistics of samples

are time-varying.

Motivated by this, we propose to learn/update the sub-

space of object appearance on the Grassmann manifold where

the measurement noise is also taken into account. The time-

evolving subspaces of object appearance correspond to the set

of all k dimensional subspaces of an n dimensional Euclidean

space. The set is the Grassmann manifold and is a curved

surface. Learning and updating the subspace is therefore per-

formed on this curved space. Description of the geometric

properties of this space can be found in [4, 5] and the refer-

ences therein.

Conventional learning/updating, e.g., using Kalman fil-

ters, is not designed for tracing movement on curved surfaces.

It is worth noting that the tangent planes of curved surfaces

are flat Euclidean spaces, furthermore, the velocity of motion

at a point correspond to a vector in the point’s tangent plane.

Since tracking velocity is equivalent to tracking motion itself,

it implies that efficient tracking and learning can be achieved

in the tangent plane.

In [5], a subspace tracking of a point-wise signal was pre-

sented by using a particle filter on a Grassmann manifold.

However, this cannot be directly applied to tracking video ob-

jects since the state vector characterizing the appearance of

a moving 2D object has a rather high dimensionality. This

makes a particle filter practically unfeasible due to the num-

ber of particles required. To overcome this problem, we pro-

pose iteratively online learning on the Grassmann surface for

the PCA-based subspace of moving object by using a Kalman

filter, and tracking a moving object by using a particle filter.

This is performed by tracking the velocity of the subspace in

the Lie algebra of the Grassmann manifold and mapping the

velocity correctly into motion on the Grassmann surface.

It is worth noting that the mapping between velocity and

motion on the Grassmann manifold can be computed owing
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to the group structure of this manifold. Manifolds having a

group structure are referred to as Lie groups. Lie groups have

the additional benefit that all tangent planes of points in the

Lie group are trivially related to the Lie algebra.

The rest of this paper is organized as follows. Section 2

reviews some basics on Lie groups and the Grassmann man-

ifold. Subspace learning/updating is formulated in Section 3.

Section 4 describes tracking visual object with time-evolving

subspace. Section 5 describes the experiments with some re-

sults and evaluations included.

2. LIE GROUP AND GRASSMANN MANIFOLD

Lie Groups: Lie groups [6] are smooth surfaces (analytic

manifolds) that have a group structure. This implies that there

exists an operator ⊕ such that for any X ,Y in the group G,

X ⊕ Y is also a member of G. Furthermore, each element X
has an inverse X−1 such that X−1 ⊕ X = E where E is the

identity element.

A most important property of Lie groups used in this work

is that the tangent planes for all points in a Lie group are re-

lated. If TX is the tangent plane at X , and f(t) is a path pass-

ing though X , then X−1 ⊕ f(t) passes through the identity

and therefore has a derivative which lies in the tangent plane

of the origin TE . Similarly, all tangent planes can be related to

the tangent plane at the origin due to this group structure. The

direction and speed of two different paths are related in the

tangent plane at the origin. A tangent plane TE is called the

Lie algebra g. Another important property of Lie groups ex-

ploited in this work is the exponential mapping, which maps

points on the Lie algebra onto the Lie group. Since the Lie

algebra is associated with a tangent plane that contains veloc-

ity vectors, the exponential mapping maps velocity vectors

into the motion. It is worth mentioning that for Lie groups in

general, the exponential map has a complex form.

Special Orthogonal Group: The special orthogonal group

SO(n) is relevant for the study of the Grassmann manifold.

SO(n) is the group of n × n orthogonal matrices. For this

Lie group, the Lie algebra can be represented as the space of

skew-symmetric matrices. Further, the exponential mapping

g �→ SO(n) for this space is given by

U = exp(A) = I +
∞∑

k=1

Ak/k! (1)

where A is a skew-symmetric matrix.

Grassmann Manifold: The Grassmann manifold, denoted as

Gn,k, is the set of all k-dimensional subspaces of R
n. Defin-

ing the group structure for Gn,k is not as easy as it is for the

special orthogonal group. There exists no useful representa-

tion of the members of Gn,k which makes a simple expression

of group addition possible.

The member in Gn,k can be represented non-uniquely as

basis matrix Un,k, or uniquely as a projection matrix P =

UT
n,k(Un,kUT

n,k)−1Un,k. No matrix multiplication can be used

for group addition in these two types of representations.

The tangent space (or, the Lie algebra) for the Grassmann

manifold can be obtained by studying Un,k. Let U ∈ SO(n)
and the first k columns of U is formed by Un,k. The rota-

tion of the right n − k columns of U does not affect Un,k

and the rotation of the first k columns does not change the

subspace. Therefore, Gn,k is equivalent to the quotient group

SO(n)/(SO(k) × SO(n − k)). This group has a Lie al-

gebra corresponding to skew symmetric matrices A given by

A =
[

0 X
−XT 0

]
, where X is a matrix of size k×(n−k),

the identity element of this group is Q =
[

Ik 0
0 0

]
.

The map from U to the projection matrix P is through

P = UQUT . The manifold formed by the projection matri-

ces is diffeomorphic to Gn,k and the path P (t) = e(At)Qe(−At)

where t = 0, · · · , 1, that starts at Q and ends at P is a geodesic

which is the shortest path between Q and P . The matrix X
in A can be seen as the geodesic direction and velocity matrix

of the geodesic from Q to P .

Given two projection matrices Pt−1 and Pt for two con-

secutive time intervals, the problem is to find the piece-wise

geodesic direction matrix Xt. A similar method as in [5] is

used. Initially, the geodesic direction matrix X0 is obtained

through an eigen decomposition of Q − P0, where P0 is the

initial projection matrix. For a given time t, a new geodesic

direction Xt between Pt−1 and Pt is obtained through the

following steps: using Ut−1 = eAt−1 to rotate Pt−1 to the

identity element Q = UT
t−1Pt−1Ut−1, and rotate Pt to P =

UT
t−1PtUt−1. Then, computing the corresponding geodesic

direction Xt from Q−P in a similar way as that in the initial

step. Finally, obtaining Ut through Ut = Ut−1e
AtUT

t−1.

3. SUBSPACE LEARNING ON THE GRASSMANN
MANIFOLD

Since the basis matrix Un,k of subspace is a point on the

Grassmann manifold, updating subspace can be formulated

as inference/filtering on the Grassmann manifold.

3.1. Define the State-Space on the Grassmann Manifold

Based on the geometrical structure of Grassmann manifold,

updating the subspace can be briefly summarized as: first, the

observed projection matrix is mapped into the associated Lie

algebra and updated along the geodesic direction in the Lie

algebra; then the updated geodesic direction is mapped back

to the Grassmann surface to obtain the updated subspace.

We assume that the piece-wise geodesic direction of the

subspace is a constant up to a difference of Gaussian noise

between the two consecutive time interval. Then, estimation

of the posterior subspace velocity can be converted into the

Lie algebra and hence formulated by a state-space model. Let
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Xt be the state vector (i.e., velocity along the true geodesic

direction of the projection matrix Pt) at time t, and Zt be the

observed noisy velocity along the geodesic direction, At =[
0 Zt

−ZT
t 0

]
be the corresponding element of the noisy

projection matrix in Lie algebra. Since At is skew-symmetric

block diagonal, there is only k(n − k) degree of freedom.

Therefore, we only consider the geodesic directions Zt and

Xt for updating/filtering.

Let the observations up to the time t be Z1:t = {Z1, ..., Zt},

the observed training object samples containing m tracked

image blobs from t − m + 1 to t be Yt = {yt−m+1, · · · , yt}.

The projection matrix Pt can be formulated by applying SVD

to the sample covariance matrix St of Yt and then the defini-

tion of projection. This projection matrix corresponds to the

noisy geodesic direction Zt in the Lie algebra. Assuming Xt

and Zt are i.i.d. distributed, we have the following state and

observation equations,

xt = Fxt−1 + v; zt = Hxt + w (2)

where v ∼ N (0, Qv) is the model noise, w is the observation

noise w ∼ N (0, Qw), Qv and Qw are the covariance matri-

ces, and xt and zt are the equivalent vector representation of

the matrices Xt and Zt.

The true geodesic direction of the projection matrix Pt

(i.e. the posterior estimation of state vector) can be obtained

by applying the rule of propagation of state density over time,

p(xt|z1:t) =
1
C

p(zt|xt)
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

where C is a constant for normalization.

3.2. Kalman Subspace Updating on Grassmann Manifold

Since the changes of subspace between any two consecutive

frames are usually smooth, it is reasonable to assume that the

piece-wise geodesic directions between two consecutive time

instants is a constant up to the difference of a Gaussian noise.

Based on the above assumption, F and H in (1) become the

identity matrices. Further, under i.i.d. white noise assumption

of the state-space model, Qv = σ2
vI and Qw = σ2

wI . From

these, the Kalman filter updating formula can be simplified,

x̂t = x̂t|t−1; Pt|t−1 = Pt−1|t−1 + σ2
vI;

Kt = Pt|t−1(Pt|t−1 + σ2
wI)−1;

x̂t|t = x̂t|t−1 + Kt

(
zt − x̂t|t−1

)
; Pt|t = (I − Kt)Pt|t−1

(3)

where Kt is the gain of Kalman filter, and Pt|t is the posterior

estimation error covariance matrix of xt. Given the filtered

velocity vector x̂t|t, the corresponding matrix form is X̂t|t.

Mapping from Ât =

[
0 X̂t|t

−X̂T
t|t 0

]
in Lie algebra to the

member Ut in SO(n) is through the exponential map in (1)

and Ut = Ut−1e
AtUT

t−1. The basis matrix Un,k,t is formed

by the first k columns of Ut.

4. OBJECT TRACKING

Online subspace learning and object region tracking are per-

formed alternatively. First, object region in the frame t is

tracked by eigen-tracking given the subspace associated with

Ut−1. Then, the newly tracked object region is used to up-

date the subspace associated with Ut (see Section 3). We

shall briefly describe the object tracking method below due

to space limitation.

For tracking, each region is normalized into a fixed size.

The motion of object region is represented by affine transfor-

mation with a parameter vector lt = [dx,t dy,t θt, st]T , where

dx,t and dy,t are the translation of region center, θt is the ro-

tation and st is the scaling. The conditional probability is

p(yt|lt) ∝ exp(||yt − UT
n,k,t−1ytUn,k,t−1||2/σ2), where yt

is the image region related to lt and σ2 is the variance (cho-

sen empirically), p(lt|lt−1) is assumed i.i.d. Gaussian dis-

tributed. A particle filter (implemented by the CONDENSA-

TION algorithm [7]) is then used to track the object region by

sampling particles from p(lt|lt−1) and assigning the weights

according to p(yt|lt). The proposed algorithm, including on-

line subspace learning/updating and object region tracking, is

summarized in Table 1.

Table 1. The proposed algorithm for object tracking

1. Initialization

Track the first f frames with template matching. Initialize P0 using

the tracked object blobs.

FOR t = f + 1 to (the total number of frames)

2. Tracking the object region: Given Ut−1, apply the particle filter

for tracking, results in a tracked object region yt.

3. Learning/Updating the subspace of object appearances

– Mapping Pt in the Lie group (Grassmann manifold) to the

geodesic direction Zt in the Lie algebra (see Section 2).

– Updating X̂t|t with the Kalman filter using (3).

– Mapping Ât|t back to the Lie group (Grassmann manifold)

with the exponential mapping using (1).

– Updating the subspace with Ut (see Section 3.2).

t ← t + 1

END (FOR)

5. EXPERIMENTS AND RESULTS

Image sequences containing tilted face images (with small

out-of-plane rotation) with variable speed of tilting, with nearly

constant or large illumination changes, partial occlusions, large

object depth changes were used for our experiments. In the

experiments, the size of object regions was normalized to

32×32, and the initial object regions in the first f = 5 frames

were tracked by template matching. Online subspace learning

and particle filter tracking were then run alternatively to the

remaining frames. The time interval for updating the sub-

space was m = 5 frames. The subspace dimension (i.e., the
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Fig. 1. Face tracking results with the proposed method (marked with a

green box). The frame number is shown on the top left corner of each im-

age. Rows 1 to 5: from video containing a tilting head and nearly constant

lighting; from video containing a tilting head and significant illumination

changes; from video containing a tilting head with partial occlusion; from

video containing a tilting head moving forward and backward; from video

where the speed of head tilting changes significantly.

Fig. 2. Comparisons: tracking results by directly updating PCA-subspace.

Rows 1 and 2 correspond to rows 2 and 3 in Fig.1.

number of basis vectors) was k = 4. The variances for the

motion parameters were chosen before the tracking. Pt was

computed from Y T
t Yt instead of YtY

T
t for computational ef-

ficiency.

Fig.1 shows some examples of the test results. By visual

inspection of the tracked object sequences as well as Fig.1, the

method is shown to have successfully tracked moving faces,

furthermore, the boxes for the tracked objects are rather tight

in all tested cases. For comparisons, Fig.2 shows examples

from tracking two videos, through directly updating PCA-

subspace without tracking the subspace on the Grassmann

manifold. The same parameter setting was used but without

the Kalman filter in Section 3.2. Test results have shown that

there is gradual loss of tracking probably due to illumination

changes and occlusions. Our comparisons have shown that

the proposed method is clearly more robust in tracking.

Fig.3 shows two evaluations to the proposed method. The

first is the distance versus image frame, where the distance

is defined as the number of pixels between the center of the

tracked face region and the manually marked nose tip. One

can observe some fluctuations of distances due to motion of

face. In the 2nd evaluation, the squared error of object region

reconstruction versus the image frame, where the error is de-

fined between the original face in the tracked image region

and the reconstructed face using the online learned subspace

at the related time instant. One can observe some fluctuations

in the squared errors although this fluctuations did not seem

to directly impact the tracking results.

Overall, the tracking is shown to be rather good in all

our tests and is robust to the types of changes (variable head

tilting speed and head depth changes, occlusions, significant

changes in illuminations).

Fig. 3. Evaluation of the proposed method. Left: the distance between the

nose tip to the tracked box center versus image frame; Right: the squared

error between the original face and the reconstructed face. The video in the

2nd row of Fig.1 was used for the evaluations.

6. CONCLUSIONS

The proposed method of online subspace learning for object

appearance through tracking the motion of the subspace on

the Grassmann manifold has made online PCA-based sub-

space learning more reliable. The online subspace learning

and object tracking, performed alternatively, has shown to

generate robust tracking performance for tracking moving ob-

jects containing tilted faces with variable tilting speed, partial

face occlusions, large face depth changes in video. Compar-

ing with the method without using subspace updating on the

Grassmann manifold, the proposed method is shown to have

yielded more robust tracking performance.
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