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ABSTRACT 

Image segmentation is a fundamental task in many computer 
vision applications. In this paper, we present a novel 
unsupervised color image segmentation algorithm that 
utilizes color gradients, dynamic thresholding and texture 
modeling algorithms in a split and merge framework. To 
this effect, pixels without edges are clustered and labeled 
individually to identify the preliminary image content. 
Pixels that contain higher gradients are further   classified by 
utilizing an iterative dynamic threshold generation technique 
and an appropriate entropy based texture model. The 
proposed algorithm was demonstrated successfully on an 
extensive database of images and benchmarked favorably 
against prior art.  
 

Index Terms— Image Segmentation, Texture 
Segmentation, Color Segmentation, Region Merging 

1.  INTRODUCTION 
 
An essential step in object based content analysis is to 
perform semantically meaningful spatial and temporal 
object segmentation. This is required to localize and track 
desired objects in an image or video source, perform 
adaptive rendering and/or scene classification. Although 
identification of object boundaries comes naturally to a 
human observer, automatically driven useful and accurate 
computer based image segmentation has proven to be a 
difficult task. Applications that would benefit from 
semantically meaningful object segmentations are 
widespread including visual database indexing and retrieval, 
medical imaging/analysis and compression. 
Extraction/segmentation of relevant content sets the stage 
for the automatic classification of objects on an assembly 
line, detection of faces in complex images, object-based 
multimedia editing, and so on. 
 
There has been a significant amount of work published on 
gray & color image segmentation (see [1] for a survey). 
Pappas [2] proposed a spatial varying Gibbs random field 
(GRF) based model for gray scale image segmentation. 

Chang et al. [3] extended the above to accommodate multi-
channel images by assuming conditional independence 
among the color channels. Saber et al. [4] introduced a GRF 
framework yielding improved segmentations and linked 
edge maps by fusing edge field and region based content. 
D’Elia et al. [5] proposed a tree structured binary Markov 
random field (MRF) model to recursively segment the 
image into progressively smaller regions. Alternatively, an 
initial segmentation may be obtained by over-segmenting 
the image and then merging the resulting regions as 
described in [6] or by utilizing semantic labels in a 
watershed framework [7]. Deng et al. [8] introduced the 
JSEG algorithm, which provided effective image 
segmentations in the presence of texture without utilizing 
prior models. Chen et al. [9] combined knowledge of human 
perception with an understanding of signal characteristics in 
order to segment natural scenes into perceptually uniform 
regions.  Schwartz et al. [10] presented a new image 
segmentation method that utilizes texture features extracted 
by wavelet transforms combined with spatial dependence 
modeled by a MRF. However, even with the extensive 
research in this area, the current algorithms contain 
significant drawbacks that limit their effectiveness in real 
life/real time scenarios. 
 
In this paper, we propose a novel unsupervised automatic 
color segmentation algorithm (see Fig. 1 for a block 
diagram) that utilizes color gradients, dynamic thresholding, 
and texture modeling in a split and merge framework. An 
initial segmentation is first obtained by dynamically 
thresholding the color gradient. This is followed by a color 
and entropy based texture detection algorithm that provides 
additional information about the initial segmented regions. 
The final segmentation is obtained using a multimodal-
merging approach that recognizes objects displaying 
occlusion and complex patterns, yielding an improved 
semantically meaningful segmentation map. The remainder 
of this paper is organized as follows. The Region Growth 
and Dynamic Seed Generation is detailed in Section 2.  
Texture modeling and region merging are outlined in 
Section 3 and 4 respectively. Results are provided in Section 
5 and conclusions drawn in Section 6.  
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2. REGION GROWTH AND DYNAMIC SEED 

GENERATION 
 
The quality of current region growing techniques is, in 
general, highly dependent on the locations chosen to 
initialize the growing procedure. We propose an alternative 
process for region growth that does not depend exclusively 
on the initial assignment of clusters in order to yield a stable 
and robust final segmentation. The procedure begins by 
searching for regions in the image, where the gradient is 
below a certain threshold. The color gradient is computed as 
described in detail in [11]. These regions form the initial set 
of clusters used to seed the segmentation process. 
Subsequent pixels/clusters are incorporated dynamically by 
utilizing their corresponding gradient as well as an entropy 
based texture model in a fusion framework. A block 

iagram of the proposed algorithm is illustrated in Figure 1 
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2.1 Initial Seed Generation 
The gradient map, computed as described in [11], is utilized 
to generate the parent seeds (PS) and initialize the 
segmentation process. This is done by first analyzing the 
color gradient dynamic range in order to select a suitable 
threshold for identifying “flat” regions. This threshold is 
then utiliz

fo
classified as non-edge pixels and utilized to generate initial 
clusters.  
 
 A problem arises at this stage due to the fact that real life 
images are not always easily classified into edge and non 
edge type pixels. A threshold that may correctly delineate 
the boundary of a given region may allow other regions to 
be merged. We combat this inherent problem by initially 
selecting regions that do not contain any edges within. If 
such regions are not found, the threshold value is increased 
until at least one region is detected to form the initial parent 
seeds (PS) map. To prevent multiple seed generation within 
homogeneous and connected regions, the reg
th
than 0.5% of the imag
particular label for differentiating purposes.  
 
2.2 Region Growth 
Once the initial parent seeds have been clearly identified 
and labeled, we proceed to expand the clusters formed in 
Section 2.1 by incorporating new unlabeled pixels. To this 
effect, the region growth procedure is initiated by increasing 
the threshold found in the initial seed generation in order to 
detect new regions or child seeds that fall below the new 

 into one of two 
re adjacent to the 
nd encompasses 

t to current seeds 
and may lead to new potential regions. In order to make the 
region growth process as efficient as possible, it is 
imperative to keep track of the parent seeds that are adjacent 
to the child ones. The objective is to be able to process all 
adjacent child seeds in a computationally efficient manner. 
We implement this by first detecting the outside edges of the 
PS map, using a nonlinear spatial filter. The output of the 
filter F(i, j) is

threshold. These child seeds are classifi
categories: the first consists of seeds that

 computed as follows:  

   (1) 

where  represents the 3 x 3 neighborhood that is being 
operated on. The result of applying this filter is a mask 
indicating the borders of the PS map. 
 
The child seeds are individually labeled. Those that are 
adjacent to the parent seeds are identified by performing an 
element-by-element multiplication of the parent seed edge 
mask and the labeled child map. Since the edges of parent 
seeds are composed of ones, the multiplication will 
determine the labels of the child seeds that are located 
adjacent to them. In order for the adjacent child seeds to be 
incorporated into the region, it is necessary to compare their 
individual color differences to their parents. Reduction of 
the number of seeds to be evaluated is accomplished by 
combining parent and child seeds that have a size smaller 

Figure 1: Flowchart of Segmentation Algorithm
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than the minimum seed size (MSS). In our algorithm the 
MSS is set to 0.01% of the image.  
 
To combine regions efficiently, an association between 
parent and child seeds is required. A non-linear spatial filter 
is applied to the PS map to obtain the parent labels. The 
filter’s response at each center point is equal to the 
maximum pixel value in its neighborhood. The association 
between child and parent is obtained by creating a two 
column matrix, where the first column contains the adjacent 
child pixels and the second column contains the output of 
the non-linear filter mentioned above. 
  
The association matrix serves two purposes. It provides the 
number of child pixels that are attached to each parent seed, 
and identifies the child seeds that share edges with more 
than one parent. Child seeds smaller than MSS can now be 
directly attached to the corresponding parent. On the other 
hand, those that share less than 5 pixels with their parents 
and are larger than the MSS are not labeled at this time are 
re-considered for classification at subsequent iterations and 
so on until all child seeds have been labeled.  
 
2.3 Dynamic Seed Generation 
The dynamic addition of seeds to the PS map is designed to 
provide a segmentation label for the remaining 
pixels/regions that display different levels of edge intensities 
and have not yet been associated with any parent. This is 
accomplished by selecting a set of threshold values, so that 
additional parent seeds may be formed. The threshold values 
are adjusted to account for the exponential decay in the 
number of edge values. Low edge values correlate to 
relatively large areas in the image. For the dynamic seed 
generation process to incorporate new areas, the threshold 
values need to increase exponentially in order to include 
elements of considerable size into the segmentation map. 
The threshold values selected for the addition of new seeds 
is advanced over a series of discrete gradient levels. For the 
work presented in this paper, we have chosen the following 
set of threshold values {15, 20, 30, 50, 85, and 120}, which 
takes into account an increment of ±10% of the area of the 
image added at each interval.  
 
At these intervals, the addition of new parent seeds follows 
a similar procedure to the region growth method. The 
regions that fall below the selected edge threshold are 
detected. All the regions that are not attached to any parent 
seeds and are larger than the MSS are added to the PS map. 
For the addition of new seeds that share borders with 
existent seeds, two qualifications need to be met: 1) the 
group must be large enough to merit its own label, and 2) 
the color difference between the region and its neighbors is 
greater than the maximum allowed threshold. 

3. TEXTURE CHANNEL GENERATION 

Texture information can be used to aid in the segmentation 
process. Regions of pixels within an image that exhibit a 
large variance in colors and/or shading indicate potential 
differences in texture.  Entropy provides a measure of 
uncertainty in these regions. By calculating the entropy of 
image segments, regions with similar entropy values may be 
grouped together in the merging process.  
 
To take advantage of the color information while 
minimizing the level of computational complexity and 
maximizing the classification accuracy, the colors in the 
image are uniformly quantized using six levels per channel. 
Each sub-cube is then given a specific color label yielding a 
mapping from a multi-dimensional color image (i.e. RGB 
image) to a single color label channel. Once the colors have 
been quantized and labeled as described above, each pixel in 
the image is now indexed to one of the representative color 
labels. The texture channel is hereby created by computing 
the local entropy on a 9-by-9 neighborhood around each 
pixel in the color labeled image, and assigning the resulting 
value to the center pixel of the neighborhood. This is 
utilized to aid in the merging process described in Section 4 
below. 

4.  MULTIMODAL REGION MERGING 
 
The image color information, the current labeled 
segmentation map derived from Section 2, and the texture 
channel computed as described above are utilized to merge 
neighboring pixels/regions in order to create the final 
segmentation map. Using a multivariate analysis of the 
independent regions [12], the resultant Mahalanobis 
distances between groups is used to merge similar regions. 
Given that we have multiple sources of information (colors 
and texture), as well as individual regions with a different 
number of pixels per region, we require a suitable method to 
arrange the data in order to efficiently investigate inter-
relationships between the regions. Hence, the data is 
modeled using an N x P matrix, where N is the total number 
of pixels in the image, and P is the total number of variables 
that contain information about each pixel. Let G be the total 
number of regions in which the image has been segmented 
insofar, then the N x P matrix is composed of G separate 
individual regions.  
 
The merging procedure is then accomplished as follows. 
The global mean value for each region is first computed. 
Applying one-way analysis of variance [12] to the N x P 
matrix, the Mahalanobis squared distances for each pair of 
regions is then calculated. Our algorithm uses these 
distances to find and merge similar regions based on the 
minimum Mahalanobis distance. Once two regions have 
been merged, the distances and segmentation labels are 
updated accordingly and the above process is repeated until 
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the minimum Mahalanobis distance exceed a user specified 
threshold. This yields the final segmentation map for the 
image at hand. 
 

5. RESULTS 
 
Our proposed algorithm was tested on a large database 
(~4,000 images) acquired from the University of California 
at Berkeley as well as many others. A sample set is 
illustrated in Figure 2. The original image is shown in 
Figure 2a, its corresponding GRF and JSEG segmentation 
using the algorithms documented in [4] and [8] are 
displayed in Figures 2b and 2c respectively, and our 
proposed segmentation is illustrated in Figure 2d.  The 
parameter utilized for our segmentations were selected 
empirically for optimum qualitative results and held 
constant for all images in the database. The implementation 
was done in a MATLAB environment (version 7.4 on an 
Intel P-4 dual core 3.2 GHz) and is capable of segmenting a 
real life 512 x 512 image in approximately 45 seconds. 
 
The advantages of our proposed algorithm are illustrated in 
the resulting segmentations found in Fig. 2d. Note the 
clarity of the “Sunlight” text in the top image, the definition 

of the segmentation as well as the reduction in “sky” classes 
in “Big Ben”, and the clear separations of neighboring 
classes in the “Hawaii”, “airplane” and  “girl” scenes in 
comparison to prior art. In general, our algorithm is less 
susceptible to over/under segmentation and provides clearer 
distinctions between neighboring regions.  

         (a)                   (b)                    (c)                     (d)  

Figure 2:  a) Original Image, b) GRF segmentation, c) 
JSEG, d) Proposed Algorithm 

6. CONCLUSIONS 
 
In this paper, we presented a novel automatic image 
segmentation algorithm based on color edge detection and 
dynamic region growing/merging. Our proposed algorithm 
was benchmarked against existing work yielding superior 
qualitative performance. The underlying segmentations 
serve to provide a firm foundation for object/content based 
image and video classification algorithms.  
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