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ABSTRACT

In this paper, we propose a novel multi-dimensional dis-
tributed hidden Markov model (DHMM) framework. We
first extend the theory of 2D hidden Markov models (HMMs)
to arbitrary causal multi-dimensional HMMs and provide the
classification and training algorithms for this model. The pro-
posed extension of causal multi-dimensional HMMs allows
state transitions in arbitrary causal directions and neighbors.
We subsequently generalize this framework further to non-
causal models by distributing the non-causal models into
multiple causal multi-dimensional HMMs. The proposed
training and classification process consists of the extension
of three fundamental algorithms to multi-dimensional causal
systems, i.e. (1) Expectation-Maximization (EM) algorithm;
(2) General Forward-Backward (GFB) algorithm; and (3)
Viterbi algorithm. Simulation results performed using real-
world images and videos demonstrate the superior perfor-
mance, higher accuracy rate and promising applicability of
the proposed DHMM framework.
Index Terms— Hidden Markov Models, Image Classifi-

cation, Trajectory Classification.

1. INTRODUCTION
Hidden Markov Models (HMMs) have received tremendous
attention in recent years due to its wide applicability in di-
verse areas such as speech recognition and trajectory classifi-
cation. Most of the previous research has focused on the clas-
sical one-dimensional HMM developed in the 1960s by Baum
et al [1], where the states of the system form a single one-
dimensional Markov chain. However, the one-dimensional
structure of this model limits its applicability to more com-
plex data elements such as images and videos.
In this paper, we propose a novel multi-dimensional dis-

tributed hidden Markov model (DHMM) framework. We first
provide a solution for non-causal, multi-dimensional HMMs
by distributing the non-causal model into multiple distributed
causal HMMs. We approximate the simultaneous solution of
multiple distributed HMMs on a sequential processor by an
alternate updating scheme. Subsequently we extend the train-
ing and classification algorithms presented in [2] to a general
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causal model. The proposed DHMMmodel can be applied to
many problems in pattern analysis and classification.

2. DISTRIBUTED MULTI-DIMENSIONAL HIDDEN
MARKOVMODEL: THEORY

We propose a novel solution to arbitrary non-causal multi-
dimensional hidden Markov model, by distributing it into
multiple causal distributed hidden Markov models and pro-
cess them simultaneously.
For an arbitrary non-causal two-dimensional hidden

Markov model which has N2 state nodes lying on the two-
dimensional state transitional diagram, if every dimension of
the model is non-causal, we can solve the model by allocating
N2 processors, each for one node, and if the N2 processors
can be perfectly synchronized and dead-lock of concurrent
state dependencies can be successfully solved, we can esti-
mate the parameters of the non-causal model by setting all
N2 processors working simultaneously in perfect synchrony.
However, this is usually impractical in reality. We propose to
distribute the non-causal model toN2 distributed causal mod-
els, by specifically focusing on the state dependencies of each
node one at a time, while ignoring other nodes. Similarly,
for arbitrary M -dimensional hidden Markov models, we can
distributing the non-causal model to NM distributed causal
HMMs, by specifically focusing on the state dependencies of
each node one at a time, while ignoring other nodes.
Fig. 1 depicts state dependencies diagrams of one non-

causal two-dimensional model (Fig. 1(a)) and its decomposed
two causal models (Fig. 1(b) and 1(c)). Directions of arrow
show state dependencies, e.g. state node A points toB means
thatB depends onA. We refer to the distributed causal hidden
Markov models as DHMMs.
Please note that in the distributing procedure, the state

dependency information is not lost but considered. Further
more, since each distributed submodel preserved the corre-
lation between neighboring state nodes, the proposed frame-
work is not a simple collection of uncorrelated causal models
but an accurate representation of the original model. To ac-
curately estimate the state transition probabilities of the non-
causal model, all of the distributed causal two-dimensional
models must be processed simultaneously in perfect syn-
chrony. However, in reality, it is impossible for the whole
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Fig. 1. DHMM example: (a) Non-causal 2D HMM. (b) Dis-
tributed Causal 2D HMM 1. (c) Distributed Causal 2D HMM
2.

system to be exactly synchronous. We pre-define an updating
sequence of all state parameters of the distributed in order to
achieve optimal approximation of the true model parameters.

3. DHMM TRAINING AND CLASSIFICATION
Define the observed feature vector set O = {(i, j), i =
1, 2, ..., I; j = 1, 2, ..., J} and corresponding hidden state set
S = {s(i, j), i = 1, 2, ..., I; j = 1, 2, ..., J}, and assume
each state will take Q possible values. The model parameters
are defined as a set Θ = {Π,A,B}, where Π is the set of
initial probabilities of states Π = {s(1, 1)}; A is the set of
state transition probabilities A = {am,n,k,l}, and

am,n,k,l

= Pr(s(i, j) = l|s(i′, j) = k; s(i, j−1) = m, s(i′, j−1) = n)
(1)

and B is the set of probability density functions (PDFs) of
the observed feature vectors given corresponding states, as-
sume B is a set of Gaussian distribution with means μm

and variances Σm,n, where m,n, k, l = 1, ..., Q; i �= i′; i =
1, ..., I; j = 1, ..., J .
3.1. Expectation-Maximization (EM) algorithm
We propose a newly derived Expectation-Maximization (EM)
algorithm suitable for the estimation of parameters of the pro-
posed model, which is an extention of the classical EM algo-
rithm [3] to higher dimensions.
Define F

(p)
m,n,k,l(i, j) as the probability of state corre-

sponding to observation o(i − 1, j) is state m, state cor-
responding to observation o(i − 1, j − 1) is state n, state
corresponding to observation o(i, j − 1) is state k and state
corresponding to observation o(i, j) is state l, given the ob-
servations and model parameters, i.e.

F
(p)
m,n,k,l(i, j) = P

(
m = s(i − 1, j), n = s(i − 1, j − 1),

k = s(i, j − 1), l = s(i, j)|O, Θ(p)

)
, (2)

and define G
(p)
m (i, j) as the probability of the state corre-

sponding to observation o(i, j) is state m, then

G(p)
m (i, j) = P (s(i, j) = m|O, Θ(p)). (3)

We can get the iterative updating formulas of parameters of
the proposed model,

π(p+1)
m = P (G(p)

m (1, 1)|O, Θ(p)). (4)

a
(p+1)
m,n,k,l =

∑I
i

∑J
j F

(p)
m,n,k,l(i, j)∑M

l=1

∑I
i

∑J
j F

(p)
m,n,k,l(i, j)

. (5)

μ(p+1)
m =

∑I
i

∑J
j G

(p)
m (i, j)o(i, j)∑I

i

∑J
j G

(p)
m (i, j)

. (6)

Σ(p+1)
m =

∑I
i

∑J
j G

(p)
m (i, j)(o(i, j) − μ

(p+1)
m )(o(i, j) − μ

(p+1)
m )T

∑I
i

∑J
j G

(p)
m (i, j)

.

(7)
In eqns. (4)-(7), p is the iteration step number. F (p)

m,n,k,l(i, j),
G

(p)
m (i, j) are unknown in the above formulas, next we pro-

pose a General Forward-Backward (GFB) algorithm for the
estimation of them.
3.2. General Forward-Backward (GFB) algorithm
We generalize the Forward-Backward algorithm in [1] [2] so
that it can be applied to any HMM system, the proposed algo-
rithm is called General Forward-Backward (GFB) algorithm.
We decompose the state sequence S of the proposed

model as follows:

P (S) = P (U0)P (U1/U0)...P (Ui/Ui−1)... (8)

where U0, U1, ..., Ui...are subsets of all-state sequence S , we
call them subset-state sequences. Define the observation se-
quence corresponding to each subset-state sequence Ui asOi.
Subset-state sequences for our model are shown in Fig. 2(b),
which is similar to [4]. The new structure enables us to use
General Forward-Backward (GFB) algorithm to estimate the
model parameters.
3.2.1. Forward and Backward Probability
Definition 1 The forward probability αUu(u), u = 1, 2, ...
is the probability of observing the observation sequence
Ov(v ≤ u) corresponding to subset-state sequence Uv(v ≤
u) and having state sequence for u-th product component in
the decomposing formula as Uu, given model parameters Θ.

αUu(u) = P{S(u) = Uu, Ov, v ≤ u|Θ} (9)

The recursive updating formula of forward probability is
αUu

(u) = [
∑
u−1

αUu−1(u−1)P{Uu|Uu−1, Θ}]P{Ou|Uu, Θ}.
(10)
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Fig. 2. (a) State transition diagram of proposed 2D-HMM and
(b) its decomposed subset-state sequences.

Definition 2 The backward probability βUu
(u), u = 1, 2, ...

is the probability of observing the observation sequence
Ov(v > u) corresponding to subset-state sequence Uv(v >
u), given state sequence for u-th product component as Uu

and model parameters Θ.
βUu(u) = P (Ov, v > u|S(u) = Uu, Θ). (11)

We also derive the recursive updating formula of backward
probability as follows (u > 1):

βUu(u) =
∑
u+1

P (Uu+1|Uu, Θ)P (Ou+1|Uu+1, Θ)βUu+1(u+1).

(12)
The estimation formulas of Fm,n,k,l(i, j), Gm(i, j) are :

Gm(i, j) =
αUu(u)βUu(u)∑

u:Uu(i,j)=m αUu
(u)βUu

(u)
. (13)

Fm,n,k,l(i, j) =
αUu−1(u − 1)P (Uu|Uu−1, Θ)P (Ou|Uu, Θ)βUu

(u)∑
u

∑
u−1[αUu−1(u − 1)P (Uu|Uu−1, Θ)P (Ou|Uu, Θ)βUu

(u)]
.

(14)
3.3. 2D Viterbi algorithm
For classification, we employ a two-dimensional Viterbi al-
gorithm [4] to search for the best combination of states with
maximum a posteriori probability and map each block to a
class. This process is equivalent to search for the state of
each block using an extension of the variable-state Viterbi al-
gorithm presented in [2], based on the new structure in Fig.
2(b).
3.4. Summary of DHMM Training and Classification Al-
gorithms
-Training:
1. Assign initial values to {πm, am,n,k,l, μm, Σm}.
2. Update the forward and backward probabilities accord-
ing to eqns. (10) and (12) using proposed GFB algo-
rithm, calculate old logP (O|Θ0).

3. Update Fm,n,k,l(i, j), Gm(i, j) according to eqns.
(13)(14).

4. Update πm, am,n,k,l, μm and Σm according to eqns.
(4)-(7) using the proposed EM algorithm.

5. Back to step 2,Calculate new logP (O|Θ), stop if
logP (O|Θ)-logP (O|Θ0) is below pre-set threshold.

-Classification: Use a two-dimensional Viterbi algorithm to
search for the best combination of states with maximum a
posteriori (MAP) probability.

Fig. 3. Image block patterns: (a) 2 patterns in [2] (b) pro-
posed 16 basic image block patterns (White: man-made re-
gions, Gray: natural regions).

Fig. 4. Comparison of image classification results: (a) an
original aerial image; (b) hand-labeled truth image; (c) clas-
sification results using the model presented in [2]—error rate
13.39%; and, (d) classification results using the proposed gen-
eral model with 16 basis image block patterns—error rate
8.25%. (White: man-made regions, Gray: natural regions)

4. APPLICATION I: DHMM-BASED REAL-WORLD
IMAGE CLASSIFICATION

In this section, we test our DHMM model for the segmenta-
tion of man-made and natural regions of 6 aerial images of
the San Francisco Bay area provided by TRW (formerly ESL,
Inc.). One of the six images used is shown in Fig. 4(a) and its
hand-labeled truth image is depicted in Fig. 4(b). The images
are divided into non-overlapping blocks, and feature vectors
for each block are extracted. The feature vector consists of
nine features, of which six are intra-block features, as defined
in [2], and three are inter-block features defined as the differ-
ences of average intensities of block (i, j) with its vertical,
horizontal and diagonal block.
In previous work [2], image classification decisions are

made for each block, either man-made region or natural re-
gion, based its corresponding hidden states. However, image
blocks are not necessarily total man-made or natural region.
In reality, most image blocks are mixture of man-made and
natural regions. Based on this observation, we propose to
define 16 basic image block patterns that cover all possible
variabilities of image blocks, depicted in Fig 3(b). An image
block can be either totally man-made, or natural, or mixture
of man-made and natural regions. Each pattern has several
corresponding hidden states, which enriches the variability
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Fig. 5. ROC curve of DHMM, Strictly Causal 2D HMM and
1D HMM for Synthetic data

of possible states within the model, and improves the accu-
racy of state estimations. Choosing more patterns of image
blocks may further improve classification accuracy, however
the computational complexity would be much larger as a re-
sult. Experimental results show 16 basic image block patterns
results in relatively higher accuracy with lower computational
complexity. Comparison for one of the classified images is
shown in Figs. 4(c) and 4(d), the proposed 2D DHMMmodel
has largely reduced the error rate of segmentation, both visu-
ally and quantitatively.

5. APPLICATION II: DHMM-BASED VIDEO
CLASSIFICATION USING MULTIPLE

INTERACTING MOTION TRAJECTORIES
In this section, we report experimental results of the pro-
posed DHMM model applied to the task of multiple-object
motion trajectory-based video classification. We test the
classification performance of both proposed distributed 2D
HMM-based classifier, causal 2D HMM-based classifier and
traditional 1D HMM-based classifier on 2 datasets: (A)
Synthetic multiple- trajectory dataset. (B) A subset of the
Context Aware Vision using Image-based Active Recognition
(CAVIAR)(http://homepages.inf.ed.ac.uk/rbf/CAVIAR/), which
contains real-world video clips of multiple trajectories with
interactions.
The results are reported in terms of 3 criteria: (1) The

average Receiver Operating Characteristics (ROC) curve. (2)
The Area Under Curve (AUC). (3) Classification Accuracy.
The Classification Accuracy is defined as : PAccuracy =
1 − |F |/|S|, where |F | represents the cardinality of the false
positives set, and |S| represents the cardinality of the whole
dataset.
We firstly test on the Synthetic dataset, whereas 1350 two-

trajectory samples. We use 50% samples as training data,
and the rest as testing data. The ROC curve is shown in
Fig. 5. Test results show that our DHMM-based classifier
achieves a 91.25% high accurate rate of classification on Syn-
thetic dataset, shown in Table 1. We then test on the CAVIAR
dataset, where we select data classes that have 2 people inter-
acting with each other, and use 50% samples of ground truth
trajectory as training data, keeping the rest as testing data.

Fig. 6. ROC curve of DHMM, Strictly Causal 2D HMM and
1D HMM for CAVIAR data

There are 9 classes of 180 two-people interacting trajectories.
ROC curve is shown in Fig. 6. As shown in Table 1, the av-
erage classification accuracy of our DHMM-based classifier
reaches 92.04%.

Table 1. Average Classification Accuracy Rates
Method–Dataset SYNTHETIC(1350) CAVIAR(180)
1D HMM 0.7654 0.8097

Causal 2D HMM 0.8319 0.8420
DHMM 0.9125 0.9204

6. CONCLUSION

In this paper, a novel multi-dimensional distributed hidden
Markov model (DHMM) has been proposed. The proposed
DHMMmodel provides an analytic solution to the non-causal
multi-dimensional hidden Markov model by decomposing it
into multiple distributed casual multi-dimensional hidden
Markov models (HMMs). Simulation results in real-world
image and video retrieval demonstrate the superior perfor-
mance, higher accuracy rate and promising applicability of
our DHMM model in comparison to previous models.

7. REFERENCES

[1] G. Soules L. E. Baum, T. Petrie and N. Weiss, “A max-
imization technique occuring in the statistical analysis of
probabilitic functions of markov chains,” Ann. Math.
Stat., vol. 41(1).

[2] A. Najmi J. Li and R. M. Gray, “Image classification by
a two-dimensional hidden markov model,” IEEE Trans.
Signal Processing, vol. 48, pp. 517–533, 2000.

[3] N. M. Laird A. P. Dempster and D. B. Rubin, “Maximum
likelihood from incomplete data via the em algorithm,” J.
R. Stat. Soc.: Series B, vol. 39(1), pp. 1–38, 1977.

[4] D. Schonfeld and N. Bouaynaya, “A newmethod for mul-
tidimensional optimization and its application in image
and video processing,” IEEE Sig. Proc. Letters, vol. 13.

960


