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ABSTRACT

A novel variant of particle filters is presented, where new

particles are generated sequentially by adapting the proposal

density dynamically according to the likelihood of the current

particle which are just generated. The new algorithm is able

to capture more nonlinear motion and produce a better local-

ization of the moving target in an efficient way. Experiments

on both synthetic and real-world data verify its effectiveness

and demonstrate its superiority over the generic particle filter.

Index Terms— Particle filter, tracking, product enclosure

1. INTRODUCTION
With the increasing availability and popularity of cameras, vi-

sual tracking is becoming even more important in many ap-

plications. Human tracking is used for behavior analysis and

event detection in video surveillance, while vehicle tracking

plays a significant role in intelligent traffic systems. Mean-

while, visual tracking is found to be a challenging problem

due to various reasons, such as rapid and/or nonlinear target

motion, clutter background, occlusions, etc.

Among the state-of-the-art algorithms, Particle Filter (PF)

[1], or Condensation algorithm [2], has achieved popularity

due to its capability to handle nonlinear and non-Gaussian

models. Compared to the classical mean shift tracking [3],

PF shows advantages in robustness, occlusion handling, flex-

ibility in multi-target tracking, model changes, etc., while the

main disadvantage is the high computational complexity. Es-

pecially when the target is in nonlinear abrupt motions, which

is common in low-frame-rate videos, the number of particles

has to be increased significantly to cover a larger search space.

How to improve its efficiency becomes a hot topic in recent

years. One way is to introduce an adaptive PF. For example,

Zhou et al. [4] proposed to tune both the number of parti-

cles and the Gaussian variance of the motion model dynami-

cally according to the tracking status. Combining mean shift

with PF is another way. Maggio and Cavallaro [5] presented

a hybrid scheme, in which every particle is applied with mean

shift until it reaches a stable position during each iteration.

Cai et al. [6] introduced a similar boosted PF into multi-target

tracking. By doing so, each particle is guided by a determin-

istic search to a local optimum and becomes more represen-

tative for the modes of the posterior probability.

A crucial reason why the generic PF is inefficient is the

lack of the likelihood knowledge of the particle. Kreucher

et al. [7] made the same observation and proposed a parti-

cle screening scheme, where a large number of particles are

first generated, and only a portion is selected based on overall

evaluations. Unfortunately the improvement of sampling effi-

ciency is at the cost of even higher computational complexity.

Our contribution is to introduce a novel and adaptive vari-

ant of PF, named Sequential Particle Filter (SPF), in which

particles are proposed sequentially, rather than all at once.

Based on the likelihood of the current particle, the proposal

density is dynamically updated for the next particle, so that

particles are sampled to be either more concentrated in the

high-likelihood area or scattered in the low-likelihood area to

capture severe nonlinear motions. Without resorting to other

methods, the intrinsic resource, i.e. the knowledge of likeli-

hood, is fully exploited to improve the sampling efficiency.

With the same number of particles as generic PF, SPF is able

to achieve a significantly higher tracking accuracy and cap-

ture abrupt motions where generic PF usually fails. In other

words, SPF requires much less particles to obtain a similar

performance as generic PF.

Section 2 reviews the generic PF, and Section 3 introduces

the proposed algorithm as well as a new motion prior ini-

tialization method. In Section 4, comprehensive experiments

are performed to compare the new algorithm with the generic

one. Section 5 concludes the whole work.

2. GENERIC PARTICLE FILTER

Let xk and zk denote the state vector and the measurement

at time k, respectively, and we use Zk = {z1, .., zk} to rep-

resent the set of measurements till time k. Under Bayesian

framework, the fundamental problem is to compute the poste-

rior probability p(xk|Zk) given the motion model p(xk|xk−1)
and the measurement model p(zk|xk). PF is one of the most

successful ways to handle the nonlinear/non-Gaussian mod-

els by implementing a Bayesian filtering based on the Monte

Carlo method. The main idea is to use an enough number of

particles in the state space and their corresponding weights,

{xi
k, wi

k}N
i=1, to approximate the posterior distribution in a
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Fig. 1. Motion model initialization.

discrete way by p(xk|Zk) ≈ ∑N
i=1 wi

kδ(xk−xi
k). A carefully

designed proposal density q(xk|xk−1, zk) (PD, also called

importance density) is used to generate all particles xi
k, while

the associated weights wi
k are calculated iteratively in Eq. (1)

by factorizing the posterior distribution and PD:

wi
k ∝ wi

k−1 · p(zk|xi
k)p(xi

k|xi
k−1)/q(xi

k|xi
k−1, zk). (1)

where p(zk|xi
k) is usually named likelihood. The optimal PD

q(xk|xk−1, zk) is proven to be p(xk|xk−1, zk), which is not

computationally feasible in most cases, while the most popu-

lar choice is the motion model, q(·) = p(xk|xk−1). With this

substitution, Eq. (1) is reduced to wi
k ∝ wi

k−1p(zk|xi
k). To

prevent PF from degenerating, a re-sampling technique is usu-

ally introduced at the end of each iteration. Hence the weight

calculation is further simplified to wi
k = p(zk|xi

k). This is

normally referred as the generic PF (GPF).

3. THE PROPOSED ALGORITHM
3.1. Motion Prior Initialization
Previously, the most frequently used motion models are the

ones with isotropic Gaussian distributions, which are not ef-

ficient in many cases. As shown in Fig. 1(a), when the target

motion is relatively linear, a polarized Gaussian will greatly

enhance the sampling efficiency by constraining the particles

to spread along the moving direction, in comparison with an

isotropic one for nonlinear motions in Fig. 1(b).

Therefore we propose an adaptive anisotropic Gaussian

based on the target motion pattern, which is very much like

an inverse procedure of the Principal Component Analysis

(PCA) [8]. First, we calculate the major eigen-vector by V1 =
xk−xk−1. Let the normalized version be V1 = [β1 β2]T , and

the second eigen-vector should satisfy V T
1 V2 = 0, by which

we obtain V2 = [β2 − β1]T . Based on the average displace-

ment of the previous few frames, we have an estimate of the

target speed square, ρ = (|xk −xk−1|2 + |xk−1−xk−2|2)/2.

Then along the major axis, we have the first eigen-value λ1 =
ρ, while on the minor axis we assign λ2 = αρ, where α ∈
[0, 1] adjusts the tradeoff between efficiency and nonlinearity.

When α → 1, the method is the least efficient and accommo-

dates most nonlinearity. When α is close to zero, it is more

efficient while considering less nonlinearity. Once we have

D = diag(λ1, λ2) and V = [V1 V2], the covariance matrix

is given by Σ0 = V DV −1. Thus with the estimated speed

vk = xk − xk−1, we have the 2nd-order motion prior:

p(xk|xk−1) = N((xk−1 + vk−1), Σ0). (2)
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Fig. 2. Four typical scenarios for proposal density updating: (a) the

variance increases; (b) the previous prior is kept; (c)&(d) the next

prior is dragged towards the current particle.

3.2. Sequential Particle Generation
The complexity of PF is directly determined by the sampling

efficiency. In most previous PFs, particles are generated i.i.d.

by the same PD, where it is likely that many particles emerge

in a low-likelihood area due to target abrupt motions. The

lack of correlation between particles is one major reason for

the inefficiency. We propose to generate particles sequen-

tially, by which the likelihood knowledge of the current parti-

cle can be fused to the proposal for the next particle.

As shown in Fig. 2 for the 1-D case, the solid curve rep-

resents the underlying posterior distribution, while the thin-

dashed Gaussian denotes the current proposal. If the current

particle yields a low likelihood (the black circle), the case that

it is close to the proposal mean should be differentiated from

the case that it is far away. As implied in the former case, Fig.

2(a), the probability that the posterior mode exists around the

proposal mean is reduced, such that the search space should

be enlarged to increase the chance of capturing the mode. We

propose that the variance of the next proposal (thick-dashed

Gaussian) should be amplified, in which the closer the parti-

cle is to the mean, the larger the variance should be. The latter

case provides no extra information, and the best guess is still

the previous proposal density or its approximate, as shown in

Fig. 2(b). However, when the particle yields a higher like-

lihood, either close to or far away from the proposal mean,

as in Figs. 2(c) and 2(d), it indicates that the posterior mode

is likely to be around, and the succeeding particles should be

more likely to appear in that area. Therefore the next proposal

is dragged towards the current particle in both cases.

Based on these intuitive ideas, we propose an adaptive

scheme to update the PD by utilizing both the particle distance
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Fig. 3. SPF (top row) vs GPF (bottom row) with 60 particles on

synthetic data frame 10, 18, 24, 32, 41 and 48 (total 50 frames).

from the proposal mean and its likelihood. Let qi(xk|xk−1) =
N(μi, Σi) be the ith PD at time k. The likelihood of particle

xi
k is obtained by the measurement model Li = p(zk|xi

k),
and we impose a multivariate Gaussian distribution onto this

particle with the peak value as the likelihood, named the like-

lihood distribution, pd(zk|xi
k) = N(xi

k,ΣL). In the 2-D

case, we solve Li = 1/(2π · |ΣL|1/2) for the covariance ma-

trix ΣL and obtain |ΣL| = 1/(2πLi)2. We therefore select

ΣL = diag([1/(2πLi) 1/(2πLi)]).
For each new frame, we initialize the PD with the motion

prior q1(xk|xk−1) = p(xk|xk−1) by Eq. (2), and then ob-

tain the first particle x1
k ∼ q1(xk|xk−1). The second PD and

the successive PDs qi(xk|xk−1) are iteratively updated in the

same fashion by,

qi(xk|xk−1) ∝ qi−1(xk|xk−1)λi · pd(zk|xi−1
k ), (3)

where λi is the parameter determined by the distance:

λi = 1 − exp(−α||xi
k − μi||2). (4)

where μi is the current proposal mean and α is the parameter

adjusting the converging speed of λi. The key idea is when

xi
k is close to μi, λi → 0; otherwise λi → 1. The major

advantage of this scheme is to utilize the product enclosure
property of multivariate Gaussians. By multiplying the cur-

rent PD and the likelihood Gaussian in Eq. (3), we obtain the

updated PD qi+1 = N(μi+1, Σi+1) for the next particle with

{
Σi+1 = (λiΣ−1

i + Σ−1
L )−1

μi+1 = Σi+1(λiΣ−1
i μi + Σ−1

L xi
k)

. (5)

In summary, we have the particles xi
k ∼ qi(xk|xk−1) and

corresponding weights wi
k = p(zi

k|xi
k). Once we collect

{xi
k, wi

k}N
i=1, we could perform the same estimation as the

GPF. Compared to the previous adaptive schemes, SPF is sim-

ple yet effective. Its uniqueness lies in that PD is updated for

each particle to fully exploit the likelihood knowledge.

4. NUMERICAL RESULTS
In this section, we carry out experiments to test the proposed

algorithm on both synthetic and real-world image sequences.

We specially select some difficult sequences with frequently

nonlinear and abrupt motions to compare the performance of

SPF with GPF. Among the appearance-based models, such as

color, edge, texture, contour, etc., we choose the most popu-

lar and the simplest color histogram as our likelihood model,
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Fig. 4. Quantitative comparison on synthetic data.

which has been applied in many previous works, such as [3]

[6] [9]. In specific, a joint RGB histogram with 10 bins per

channel is utilized.

4.1. Synthetic Image Sequences
We first generate various synthetic sequences where a blue

target moves from the top-left towards the bottom-right in a

noisy background. By imposing an additive Gaussian noise

onto the constant speed, the target imitates a nonlinear move-

ment. For both SPF and GPF, we initialize the proposal co-

variance to be Σ0 = diag([25 25]) and repeat the experiments

over 300 times. In Fig. 3, a typical sequence of tracking re-

sults are shown for comparison. With only 60 particles, SPF

is able to locate the target exactly in almost every frame, while

GPF encounters obvious tracking errors around Frame 32 and

48 due to abrupt movements. When we select α = 0.2, the

average tracking error of SPF is only 1.1267 pixels/frame. We

also varies the number of particles in both schemes, and the

average tracking errors (300 repetitions) are plotted in Fig. 4.

With only 30 particles, SPF achieves a similar performance

as GPF with over 120 particles. The significantly lower er-

rors demonstrate the superiority of SPF over GPF.

4.2. Real-World Applications
Then we test SPF and GPF on several real-world image se-

quences with α = 1 and 60 particles. The first one is the

’Stennis’ sequence, in which the white ball is moving fast up

and down and changing directions frequently. As shown in

Fig. 5, GPF (Σ0 = diag([100 100])) is easy to lose track

due to rapid movement though it could re-capture the target

from time to time. SPF, however, successfully traces the tar-

get in every frame by capturing the motion information and

adapting the sampling. On a workstation with an Intel Xeon

CPU and 3G RAM, the average computing times of GPF

and SPF in MATLAB without optimization are approximately

38.6 and 43.3 milliseconds per frame, respectively. The lim-

ited difference denotes the overhead for updating PD, which

implies that for GPF to achieve a similar performance, the

computational cost will be significantly higher than SPF due

to much more particles needed. In Fig. 6, we show a se-

quence of a pool table tracked with SPF. The tracker locates
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Fig. 5. SPF (top row) vs GPF (bottom row) with 60 particles on Stennis sequence frame 2, 8, 14, 20, 26, 32, 38, and 44.

Fig. 6. SPF tracking in Pool Table sequence with 60 particles on frame 2431∼2540 (every 10 frames).

the ball successfully when it moves fast and changes direc-

tions abruptly.

In summary, with a smaller initial covariance, GPF is un-

able to capture abrupt motions, while the tracking errors will

inevitably increase with a larger covariance. This prior in-

formation is not available in most scenarios. Fortunately, the

adaptive SPF succeeds in capturing this nonlinearity by adapt-

ing its PD to the current measurement.

5. CONCLUSIONS

This work introduces a new simple and efficient variant of PF,

named Sequential Particle Filter, in which particles are pro-

posed sequentially through dynamic adjustment of the pro-

posal density. That is achieved by fully exploiting the like-

lihood information of the current particle. In specific, the

scheme is able to automatically gather particles for a linearly-

moving target or to disperse particles to increase search space

in a nonlinear case. Comprehensive experiments have demon-

strated its superiority over the GPF, especially in terms of effi-

ciency and swift adaptability to nonlinear and abrupt motions.
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