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ABSTRACT
This work is on accurate segmentation of images using local image
characteristics. An appropriate Gabor lter with customized size,
orientation, frequency and phase for each pixel is selected to measure
the image features. A new image property called phase divergence
is introduced to select the lter size. Brightness, color, texture and
position features are extracted for each pixel and the joint distribu-
tion of these pixel features is modeled by a mixture of Gaussians. A
new version of the expectation maximization (EM) algorithm called
Penalized Inverse EM (PIEM) is formulated for estimating the pa-
rameters of the mixture of Gaussians model. Furthermore, we de-
termine the number of models that best suits the image based on
Schwarz criterion. The performance on the Berkeley segmentation
benchmark proves the ef cacy and accuracy of the proposed method.

Index Terms - Clustering, EM, segmentation, Schwarz criterion.

1. INTRODUCTION

There are a wide variety of methods in the literature for color im-
age segmentation, which can be categorized as: edge detection, his-
togram thresholding, region based methods, characteristic feature
clustering, neural network, and statistical approach [1]. Histogram
thresholding is the most widely used technique for image segmenta-
tion [2, 3]. Clustering of characteristic features is the multidimen-
sional extension of the concept of thresholding [4, 5]. In this paper
we use multiple features clustering to perform image segmentation.
The outline of the segmentation algorithm involves three stages. 1)
Selecting an appropriate Gabor lter of adaptive size, orientation,
frequency and phase for each pixel, to extract brightness, color, tex-
ture and position features. We propose a novel method of lter size
selection, which is based on a newly introduced local image prop-
erty called phase divergence. 2) Clustering the pixels into regions
by modeling the joint distribution of pixel features with a mixture of
Gaussians. To estimate the parameters of this model a novel EM al-
gorithm - PIEM is employed and the resulting pixel-cluster member-
ships provide the segmentation of that image. This proposed PIEM
algorithm is a combination of existing PEM [6] and IEM [7]. 3) Fi-
nally, determining the optimum number of clusters that best suits a
given image, using Schwarz criterion [8]. This criterion provides an
attractive way to perform data clustering without knowing the exact
number of clusters.

2. FEATURE EXTRACTION

To formulate a Gabor lter with customized size, w; phase, φ; ori-
entation, θ; and frequency, f , we consider 8 different sizes of the

lter as w= 2k− 1, for k = 1, 2, . . . , 8. Given an image I(x, y), its
analytic image is de ned as IA(x, y) = I(x, y)− jIH(x, y), where
IH(x, y) is the Hilbert transform of I(x, y). After having the Hilbert
transform, we can compute the local phase, which is referred to as
the argument of the analytic image. For a window size w= 2k − 1,
we represent the phase at pixel (x, y) as, φk(x, y).

We have proposed a new image property called phase divergence
that is used for selecting the controlling size of the lter window,
which is also called the integration scale. Phase divergence is a mea-
sure of the extent to which the phase angles in a certain window
around a pixel are in the same direction with respect to the phase
angle of that pixel. The phase divergence at pixel (x, y) for a given
window size w= 2k − 1, as we de ne it, is

�φk(x, y) =
|φk+(x, y)− φk−(x, y)|

φk+(x, y) + φk−(x, y)
(1)

where, φk+(x, y) and φk−(x, y) are the number of phase angles in
the window w, that are on the positive side and the negative side, re-
spectively, of the phase angle at pixel (x, y). By computing the phase
divergence for w= 2k − 1, k = 1, 2, . . . , 8; we produce a stack of
phase divergence images across scale, k. Then, the phase divergence
image at scale k is smoothed by convolving with a Gaussian lter of
size, w. Finally the scale is selected based on the derivative of the
phase divergence with respect to scale. For a given pixel (x, y) the
scale k̂(x, y) is selected as the rst value of k(x, y) for which the
difference between values of phase divergence at successive scales
(�φk(x, y)−�φk−1(x, y)) is less than 1%. In the uniform re-
gions of an image, the selected scale should be 1, because uniform
region appears not to change across scale. A region can be declared
to be uniform if the mean contrast (standard deviation of intensity)
of that region across scale is less than 0.1 [9].

The method of orientation determination that is used in this pa-
per is based on the idea of utilizing the information present in the
horizontal and vertical gradients, �x and �y of the image, respec-
tively. The orientation angle at pixel (x, y) is determined by follow-
ing the approach proposed in [10],

θk(x, y) = 90◦ +
1

2
tan−1

�
2Gxy

Gxx −Gyy

�
, (2)

where, Gxy =
�
w�x�y , Gxx =

�
w�

2
x, Gyy =

�
w�

2
y.

The spatial derivative of the local phase gives the local frequency
of an image. For the scale k we denote the frequency at pixel (x, y)
as fk(x, y), which is estimated by computing the standard devia-
tion of the phase values in the window of size w. After selecting
the appropriate scale k̂(x, y) for a given pixel, we compute lter
size ŵk(x, y), phase φ̂k(x, y), orientation θ̂k(x, y) and frequency
f̂k(x, y) at that scale. Thus, nally we have an appropriate Gabor
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lter with customized parameters for each pixel that is denoted as
Gk,θ,φ,f(x, y).

2.1. Image Features

We consider the following features for image segmentation such as,
two brightness features: brightness gradient and local energy con-
tent of the L* component; three color features: color gradient, local
energy content of the a* and b* components; three texture features:
phase divergence, homogeneity and homogeneous intensity; and two
position features: (x, y) coordinates of the pixels. These features are
discussed below.

Local energy is de ned as the square root of the sum of the
squared response of two matched lters - one has the even-symmetric
and the other has the odd-symmetric line-spread function [11].

LE
L∗

=
�
L
∗ ∗ ∗Go

k,θ,φ,f

�2
+
�
L
∗ ∗ ∗Ge

k,θ,φ,f

�2 (3)

where, Go
k,θ,φ,f (x, y) and Ge

k,θ,φ,f (x, y) are the pair of odd and
even symmetric lters, which are the real and imaginary part of the
complex Gabor lterGk,θ,φ,f(x, y), respectively.

Gradient based features detect local changes. To measure the
gradient feature we place a window of size ŵk(x, y) × ŵk(x, y) at
pixel (x, y) and divide that window along the line at an orientation
θ̂k(x, y). We then compare the histogram contents of the result-
ing two regions by using the χ2 histogram difference operator [12],
given by χ2(s, t) = 1

2

�255
m=0

(sm−tm)2

sm+tm
, where s and t are the two

histograms of the two halves of the square window at (x, y) and m
represents the bins of the histograms. For the brightness gradient we
compute histograms of L* image. We determine the marginal color
gradients for a* and b* and consider the full color gradient to be the
sum of these two marginal gradients: CG = CGa +CGb [12]. This
is justi ed by the fact that the a* and b* channels are orthogonal with
each other.

The homogeneity feature is calculated by taking into account
both local and global information [3]. Homogeneity is de ned as a
composition of standard deviation and discontinuity of the intensi-
ties. At pixel (x, y), the homogeneity is expressed as

H(x, y) = 1−E(x, y)× V (x, y), (4)

where E(x, y) is the normalized gradient magnitude calculated by
employing a Sobel lter of 3×3 window, and V (x, y) is the normal-
ized standard deviation of the intensities within the window ŵk×ŵk.
The homogeneity value at each pixel has a range from 0 to 1. The
more uniform the local region surrounding a pixel is, the larger the
homogeneity value the pixel has.

Homogeneity value is used for replacing the intensity values of
the L* image by the corresponding homogeneous intensity. For a
given intensity value, L*(x, y) = I chosen from 0 to 255, the steps
for computing the homogeneous intensity is as follows: 1) First,
the homogeneity values corresponding to I , that are greater than a
threshold value are added to give Ht(I). 2) Then Ht(I) is divided
by the number of pixels which have the intensity value equal to I to
produce Hnt(I). 3) Finally, the homogeneous intensity correspond-
ing to the intensity I is the multiplication of Hnt(I) and I . The
homogeneous intensity re ects how uniform a region is and plays an
important role in image segmentation, since the outcome of image
segmentation would be several homogeneous regions.

The last texture descriptor, phase divergence, can be calculated
using Eq. 1 at the selected scale for each pixel (x, y). Including the
(x, y) coordinates as position features, we have 10 features, which
form a 10-dimensional feature vector for each pixel. The orientation,
frequency and scale do not appear in the feature vector formulated

by the brightness, color, texture and position descriptor. As a result,
clustering can occur across variations in orientation, frequency and
scale.

3. CLUSTERING AND EM ALGORITHM

After extracting all the features for an image of size M × N we
have a set of L = M ×N feature vectors, which can be regarded as
points in a ten-dimensional feature space. In order to cluster those
points, we make use a new variant of EM algorithm, PIEM to de-
termine the parameters of a mixture of C Gaussians in the feature
space. The basic idea in the EM algorithm is to iteratively nd the
maximum likelihood estimate of the unknown parameters (associ-
ated with a sample of observations), which maximize the probability
density function of the sample, called the likelihood function. The
Gaussian mixture model that we consider is given by the data con-
sists of L independent random samples X = x1, x2, . . . , xL from a
C-component Gaussian mixture, Pxi|Θ =

�C

j=1 pjN(xi|μj , Σj),
where xi is a feature vector; pj are the mixing weights, 0 < pj < 1

satisfying
�C

j=1 pj = 1; and N(xi|μj , Σj) is the multivariate nor-
mal density of j-class parameterized by μj and Σj . The unknown
parameters of the mixture model and the log-likelihood can be de-
noted as

Θ = (p1, p2, . . . , pC , μ1, μ2, . . . , μC , Σ1, Σ2, . . . , ΣC).
L(Θ) = log

��L

i=1 Pxi|Θ

�
=
�L

i=1 log
�C

j=1 pjN(xi|μj , Σj)

Maximum likelihood parameter estimate Θ̂ may ef ciently be com-
puted with the iterative application of the following two steps of
EM algorithm [13]: 1) In the E-step, based on the current param-
eter estimates at k-th iteration, the posterior probability that class
ωj is responsible for the generation of sample xi is estimated as

Pωj |xi,Θ(k) =
p
(k)
j

N(xi|μ
(k)
j

,Σ
(k)
j

)
�

C
j=1 p

(k)
j

N(xi|μ
(k)
j

,Σ
(k)
j

)
.

2) In the M-step, we obtain new parameter estimates

p
(k+1)
j =

1

L

L�
i=1

Pωj |xi,Θ(k)

μ
(k+1)
j =

�L

i=1 Pωj |xi,Θ(k)xi

�L

i=1 Pωj |xi,Θ(k)

(5)

Σ
(k+1)
j =

�L

i=1 Pωj|xi,Θ(k)(xi − μ
(k+1)
j )(xi − μ

(k+1)
j )T

�L

i=1 Pωj |xi,Θ(k)

3.1. Penalized EM algorithm

The EM learning algorithm can lead to over tting during the max-
imization of the likelihood function due to singularities and local
maxima in the log-likelihood function. As a solution to this prob-
lem, in PEM, a penalty term is added to the log-likelihood function
as a regularizer [6]. In particular the negative logarithm of a conju-
gate prior is chosen as the penalty function so that EM update rules
can be derived to obtain the optimal parameter estimates.

A conjugate prior of a single multivariate normal density is a
product of a normal density N(μj |νj , η

−1
j Σj) and a Wishart den-

sity Wj(Σ
−1
j |αj , βj) [14]. A proper conjugate prior for the mix-

ture weights 
p = (p1, p2, . . . , pC) is a Dirichlet density D(
p|
γ).
αj , βj , γj , ηj and νj are hyperparameters which are de ned using
three ”equivalent sample sizes” τp, τμ and τΣ [6].

Consider an additional data set Y ∗ of size L′ such that Y ∗j of
size lj denotes the subset of Y ∗ generated by Gaussian j, then the
hyperparameters can be expressed as αj = τΣ+d

2
, γj = τp + 1,
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ηj = τμ, βj = τΣ
2

S̃j , νj = Ȳ ∗j ; for j = 1, 2, . . . , C . The
concrete values for the statistics, Ȳ ∗j and S̃j are chosen as 0 and
Id×d, respectively. Next the degree of regularization is determined
by varying the equivalent sample sizes and those values are set to
τp = τμ = 0 and τΣ = 0.1 as suggested in [6].

For the PEM algorithm, the prior of the Gaussian mixture is
pj = D(
p|
γ)

�C

j=1 N(μj |νj , η
−1
j Σj)Wj(Σ

−1
j |αj , βj). In the case

of PEM [6], 1) the MAP parameter estimate maximizes the follow-
ing log-posterior function,

Lp(Θ) =
�L

i=1 log
�C

j=1 pjN(xi|μj , Σj) + logD(
p|
γ)

+
�C

j=1

�
log N(μj |νj , η

−1
j Σj) + log Wj(Σ

−1
j |αj , βj)

� (6)

2) the E-step remains identical to the EM algorithm and 3) the M-
step becomes

p
(k+1)
j =

�L

i=1 Pωj |xi,Θ(k) + γj − 1

L +
�C

j=1 γj − C

μ
(k+1)
j =

�L

i=1 Pωj |xi,Θ(k)xi + ηjνj

�L

i=1 Pωj|xi,Θ(k) + ηj

(7)

Σ
(k+1)
j =

�L

i=1 Pωj |xi,Θ(k)(xi − μ
(k+1)
j )(xi − μ

(k+1)
j )T

�L

i=1 Pωj |xi,Θ(k) + 2αj − d

+
ηj(μ

(k+1)
j − νj)(μ

(k+1)
j − νj)

T + 2βj�L

i=1 Pωj |xi,Θ(k) + 2αj − d

The described PEM procedure leads to faster convergence and Σj

does not approach the null matrix, as often happened in case of stan-
dard EM.

3.2. Inverse EM algorithm

In the IEM algorithm [7], the basic modi cation consists of virtually
updating the observed covariance matrices in the rst stage and then,
in the second stage, the reversed updating of the estimated covari-
ances. This algorithm is devoted to the estimation of the parameters
of multivariate Gaussian mixture where the covariance matrices are
constrained to have a linear structure such as Toeplitz, Hankel, or
circular constraints. The E-step for IEM is the same as EM and the
M-step updates are as follows. 1) At rst, a basis {Q}M

l=1 (indepen-
dent matrices, not necessarily orthogonal) of the constrained linear
space S is provided, where M is the dimension of the constrained
linear space. 2) The parameters p

(k+1)
j , μ

(k+1)
j and A

(k+1)
j are up-

dated following the EM algorithm at the (k + 1)-th iteration, where
Aj is the observed weighted covariance matrix. Next, the empirical

covariance matrix Γj is calculated as Γ
(k+1)
j =

A
(k+1)
j

+
υj
|ρj |

E
−1
j

1+
υj+d+1

|ρj |

,

whereEj is a positive de nite matrix belong to the class j, and υj is
the degree of the freedom of the distribution for Γj , which is inverse
Wishart density.

3) Finally, the unknown covariance matrices areΣ
(k+1)
j = Σ

(k)
j +

akDj , where Dj =
�

x̂lQl − Σ
(k)
j is the amount of increment

needed in Σ
(k)
j and ak is the step size. Now, the vector x̂ needs to

be computed which can be expressed as x̂ = B−1b, where Bil =

trace
�
Σ

(k)−1

j QlΣ
(k)−1

j Qi

�
, bi = trace

�
Σ

(k)−1

j Γ
(k)
j Σ

(k)−1

j Qi

�
; for

i, l = 1, . . . , M.

The step size ak is calculated as ak = trace[E]

2trace[F ]−trace[E]
, where

E = Σ
(k)−1

j DjΣ
(k)−1

j Dj and F = Σ
(k)−1

j DjΣ
(k)−1

j DjΣ
(k)−1

j Γ
(k)
j .

4) If the updated Σ
(k+1)
j is non positive, then ak is changed

by ak

2
and the algorithm returns to step 3, otherwise the iteration

number k is incremented by one and the algorithm iterates back from
step 2.

3.3. Penalized Inverse EM algorithm

In this paper, we have incorporated the favorable features of both
the PEM and the IEM to formulate PIEM. Similar to the IEM algo-
rithm, the PIEM algorithm also starts with the generation of a basis
{Q}M

l=1 of the constrained linear space S . Then at the second step
the parameters p

(k+1)
j , μ

(k+1)
j and Γ

(k+1)
j are updated following the

PEM algorithm [6]. Finally the covariance matrices of the Gaussian
mixture models at (k + 1)-th iteration Σ

(k+1)
j are calculated by fol-

lowing steps 3 and 4 of the Inverse EM algorithm. This algorithm
is found to converge much faster than the EM algorithms discussed
previously. Moreover, the clustering performance is proved to be the
best for the proposed PIEM algorithm.

3.4. Clustering Using PIEM

The above discussed PIEM algorithm is applied for the clustering of
a set ofL feature vectors. Given the number of clustersC and the im-
age to be segmented, we randomly divide the image in C windows.
Then, the means of the Gaussians are initialized by the average fea-
ture vectors in those windows and the mixing weights are initialized
by the number of feature vectors present in those windows normal-
ized by the total number of feature vectors. The initial covariance
matrices are set to be the identity matrix.

The approach for estimating the number of clusters C, is based
on choosing Ĉ which will maximize p(C|X). By Bayes theorem,
p(C|X) = p(X|C)p(C)

p(X)
and p(X|C) =

�
p(X|Θ)πC(Θ)dΘ, where

πC(Θ) is the prior probability, which is rarely known and p(C) =
1
C
. The Schwarz approximation [8] for p(X|C) is, m̂C = p̂(X|C) =

L−
n
2 p(X|Θ̂C), where n = C − 1 + Cd + C

d(d+1)
2

is the num-
ber of unknown parameters. Then p(C|X) can be estimated as
p̂(C|X) = m̂C�

i m̂i
and the optimum number of clusters Ĉ will be

chosen in such way, that log p̂(C|X) or equivalently log m̂C is max-
imized where log m̂C = −n

2
log L + L(Θ).

In our experiment we rst estimate an empirical value of the
number of clusters C̃ from the number of valleys present in the his-
togram of the intensity image. Then the optimum value for C is
determined by employing the Schwarz criterion for C ranging from
(C̃ − 1) to (C̃ + 1), satisfying C ≥ 2.

For clustering, we produce an image of C-levels by encoding
the pixel-cluster relationships where each pixel value is replaced by
the cluster label for which it attains the highest likelihood value,
Pxi|Θ. At this stage, the clustered image is spatially smoothened
by the repeated application of 3 × 3 mode lter (the value that oc-
curs most often) until the number of pixels that are different between
two successive images is less than 1%. In the smoothed image, there
may be some regions of a few pixels located inside another large
region. Those smaller regions are required to be classi ed as the
member of that large region to produce homogeneous and united re-
gions in the segmented image, which is accomplished by employing
a connected-component algorithm [15].

4. EXPERIMENTAL RESULTS

We have applied the proposed scheme for the segmentation of sev-
eral images. In this section, we present the experimental results ob-
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tained at different stages of the clustering algorithm. At rst, the
histogram of an image is analyzed to predict the approximate num-
ber of clusters. From the histogram of the image shown in Fig 1
(a), the estimated number of clusters is C̃ = 3. The clustered im-
ages obtained from PIEM for C = 2, 3, 4 is illustrated in Fig 1
(b), (c), and (d), respectively. According to the Schwarz criterion,
C = 2 gives the best segmentation performance. For C = 2, 3, 4
the nal segmented images obtained after the employment of spatial
smoothening and connected-component algorithm are presented in
Fig 1 (e),(f) and (g), respectively.

     (a)         (b)          (c)            (d)             (e) 

     (f)         (g)          (h)            (i)             (j) 

Fig. 1. a) Original image. Clustering using PIEM for (b) C = 2, (c)
C = 3, (d) C = 4. Final segmentation result after the postprocess-
ing for (e) C = 2, (f) C = 3, (g) C = 4. Results from the sampled
data for (h) C = 2, (i) C = 3, (j) C = 4

The segmentation results from the PIEM algorithm are gener-
ally good. However, the computational burden is signi cant, be-
cause the number of feature samples is very large for the images of
size 321 × 481. Hence, to reduce the computational cost without
compromising the quality of the segmentation, we formulate a good
representative fragment of the whole data by retaining the alternate
rows and columns of the image. After the clustering of all the pixels
in this sampled data set using PIEM, the pixel-cluster membership
computed for a pixel is assigned to the 3 neighbors of that pixel in a
2×2 window. In Fig 1 (h), (i) and (j) we present the results of clus-
tering the sampled data for C = 2, 3 and 4 using PIEM. The seg-
mentation quality of the sampled data set is as good as the original
data. Fig 2 shows the segmentation results on the subsampled ver-
sion of some randomly chosen typical images taken from the Berkley
segmentation benchmark. From this result, it can be claimed that the
presented method can be used as an effective and reliable technique
for color image segmentation.

Fig. 2. Segementation results of some randomly chosen images.

5. CONCLUSION

In this paper we have presented an unsupervised color image seg-
mentation algorithm, where we group the pixels into clusters based
on color, texture, brightness and position features extracted by using
a customized Gabor lter. A novel scale selection technique based
on the proposed image property phase divergence is used to select
the size of the lter. The proposed PIEM algorithm for clustering is
the integration of PEM and IEM. The basic modi cation for PIEM
consists of updating the observed covariance matrices following the

PEM algorithm and then, the reverse updating of the estimated co-
variances according to the IEM algorithm. In addition, Schwarz cri-
terion is employed to determine the appropriate number of clusters
suitable for the image. We have also analyzed the performance of the
clustering algorithm on a subsample version of the original image, to
reduce the computational cost without degrading the segmentation
quality. The proposed method performs favorably on the Berkley
image segmentation Benchmark. The generality of this automatic
systemmakes it applicable in a wide range of computer vision tasks.
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