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ABSTRACT

Anisotropic diffusion (ATD) is an edge-oriented, scale-space
based, and iterative image-smoothing process. Twomain chal-
lenges of ATD are how to automatically stop the iterative pro-
cess, so to avoid blurring, and how to determine the scale
(or edge-strength) parameter, so to best differentiate between
edge and noise. In this paper, we propose 1) an automatic
noise-adaptive stopping-time estimator and 2) a robust scale
parameter (or edge strength) estimator. With these two novel
estimators, our adaptive ATDmethod effectively reduces noise
(high PSNR gain) and preserves structures (significantly less
blurring) than conventional ATD.

Index Terms— Denoising, anisotropic diffusion, stopping-
time estimation, edge-strength, edge preservation.

1. INTRODUCTION

Anisotropic diffusion (ATD) [1, 2, 3] has become a widely
used tool for multi-scale non-linear image processing such as
denoising or segmentation. It is an iterative scale-space ap-
proach that is edge dependent by defining a diffusion coef-
ficient as a function of the local gradient to encourage intra-
region over inter-region smoothing. Two main challenges of
ATD are 1) how to automatically stop the iterative process,
i.e. determine an optimal stopping time T so to avoid too-
much smoothing (blurring) and 2) how to determine the scale
(or edge-strength) parameter σe so that noise and edge are not
confused, even in very high or very low noisy images.
In scale-space methods such as ATD, researchers often

set the stopping time T to a large value (ideally infinity) and
observe how the diffused function evolves with time and con-
verges to a constant. For real-time or fast denoising, we re-
quire an effective fast stopping-time function: effective to
stop the diffusion process and avoid blurring and fast to not
overload the computationally expensive ATD.
Stopping-time criteria are proposed in the literature but

they are either image-dependent, developed for 1-dimensional
signals, or require extensive computations (e.g., [4, 5]).
In the remainder of this paper, we discuss challenges and

advantages of ATD in Section 2; in Section 3, we propose
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a novel stopping-time estimator to automatically stop the it-
erative ATD and a novel edge-strength estimator to adapt to
edges and noise; in Section 4, we objectively and subjectively
show the superior performance of the proposed estimators un-
der Gaussian noise and high structure; we conclude the paper
in Section 5.

2. ATD BASED ON ROBUST STATISTICS

The general form of ATD [1] is

It+1
s = It

s + λ

Ns∑
p=1

Cp(‖ ∇Ip ‖) · ∇Ip, (1)

where |Ns| is the number of directions (e.g., |Ns| = 4 for
north, south, west, and east) along which ATD is computed, s
is the center pixel, 1 < t ≤ T is the current scale, T is stop-
ping time or number of iterations, It

s = Is(x, y, t) = I(s, t)
is the image intensity at s and the current scale t, It+1

s is the
intensity at the next scale t + 1 and is a scaled version of
It, ∇Ip = (Ip − Is) is the gradient of the image in the di-
rection p, λ is a time step responsible for the stability of the
function, and Cp(‖ ∇Ip ‖) is the conduction-coefficient (or
edge-stopping) function in direction p. 0 ≤ C(·) ≤ 1 should
approach zero when the diffusion is at edges and approach
one when the diffusion at homogeneous areas.
Black et al. [2] develop a statistical interpretation of (1)

by estimating a smoothed image from noisy data using tools
of robust statistics. This estimation should satisfy,

minI

∑
s∈I

∑
p∈Ns

ρ(Ip − Is, σ), (2)

where ρ is a robust error norm,Ns represent the spatial neigh-
borhood of pixel s, σ is a scale (or edge strength) parame-
ter that controls the shape of the edge-stopping function and
hence determines residual errors (outliers or edges). Solving
(2) using gradient descent gives

It+1
s = It

s +
λ

|Ns|
∑

p∈Ns

ψ(Ip − It
s, σ), (3)

|Ns| is the number of neighbors, ψ(Ip−It
s) = ρ′(Ip−It

s), the
derivative of the error norm, is the influence function. To in-
crease the robustness and preserve edges, ψ(·) should have a
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high value when (Ip−It
s) is small, and should reach its small-

est value when (Ip − Is) increases beyond an edge strength.
In [2], ψ(∇I) = C(∇I)∇I , i.e., the edge-stopping function
from a statistical point of view is the influence function di-
vided by the image gradient C(∇) = ψ(∇I)

∇I
.

Black et al. [2] suggest robust edge-stopping functions,
Lorentzian and Tukey, as in

CL(∇I) = 1

1+
(∇I)2

2(σ)2

CT (∇I) =

{
1
2 [1− (∇I

σ
)2]2 if |∇I| ≤ σ

0 otherwise

(4)

Note that σ, the scale parameter, controls the edge strength.
As shown in Fig. 1, with σ = σe, the Tukey function is more
sensitive (responsive) to edges than Lorentzian: in Tukey,
when the gradient magnitude is over a specific value, the slope
descends rapidly and reach the value zero while it reaches a
value close to zero in Lorentzian.
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Fig. 1. Edge-stopping functions.

Note that (3) requires three parameters: λ for stability, σ
for scaling (or edge-strength), and T for stopping time. [2]
estimates σ separately for Tukey and Lorentzian functions
based on the gradient of the image as in

σT = σe

√
5 and σL = σe√

2
,

σe = 1.4826 ·MAAD(‖ ∇I ‖) (5)

where MAAD = medianI(‖ ∇I ‖ − median(‖ ∇I ‖)) is
the median absolute deviation, σe is the robust scale (or the
edge strength), σT and σL are the robust scales for the Tukey
and Lorentzian edge-stopping functions, respectively. [2] cal-
culates λ using the influence function ψ(·) as in

λ = 1
ψ(∇I) ⇒ λT = 25

16σe

and λL = 2
σe

, (6)

where λT and λL are the values of the stability parameter for
Tukey and Lorentzian functions.

3. PROPOSED PARAMETER ESTIMATION

3.1. Stopping-time estimation

We analyzed the behavior of [2] ATD applied to noisy images
and examined the image quality (in PSNR) in relation to the

stopping time T and to the edge strength σe. Fig. 2 shows re-
sults of our noise/T analysis using Tukey edge-stopping func-
tion (similar behavior was found for Lorentzian function). As
can be seen, for heavy noisy images, e.g., PSNR = 14dB,
the higher T is, the higher the PSNR gain is; the lower the
noise level is, e.g., PSNR = 43dB, the less number of iter-
ations we need. We also found that Lorentzian function gives
better PSNR in high noisy images than Tukey function (which
gives better PSNR gain in not or little noisy images).
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Fig. 2. PSNR gain versus T using CT (∇I).

Consequently, applying a higher or lower T than required
will introduce significant blurring or annoying residual (spu-
rious) noise. We therefore propose to adapt T exponentially
to the estimated noise in PSNR as

T = (tx − tn) · e− bP

a + tn, (7)

where tx and tn are the max. (e.g., 2500) and min. (e.g., 3)
of T , P̂ is the estimated noise in PSNR (using [6]), and a is a
constant. Fig. 3 plots the proposed stopping-time function for
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Fig. 3. Proposed stopping-time estimation.

different a. We set a = 6 because it outperforms (in PSNR)
the manually tuned T (see Fig.3) for optimal ATD [2]. We
applied (7) to all noise levels, including no-noise.

3.2. Robust edge-strength estimation

Black et al. estimate the edge strength σe using the MAAD
of the image gradient. For Tukey edge-stopping function, this
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estimate gives good results in images with no or little noise
and fails in noisy images. This is because Tukey edge stop-
ping is very responsive to edges (see Fig. 1) and in the pres-
ence of noise, Tukey confuses noise with edges. Thus we
require “less edge-responsive” (or “less robust”) Tukey σe.
On the other hand, the Lorentzian edge stopping is not well
responsive to edges as Tukey is and may thus introduce blur-
ring, especially in image with no or little noise. Thus we re-
quire a “more edge-adaptive” Lorentzian σe.
We propose to estimate σe using the mean absolute devi-

ation (MEAD) instead of the [2] MAAD as follows.

σe = β · meanI(‖ ∇I ‖ − mean(‖ ∇I ‖)),
σT = σT

√
5 and σL = σe

√
2.

(8)

We derive (8) from the relation between MEAD and the stan-
dard deviation StD as

MEAD ≤ StD⇒ StD = β ·MEAD, β > 1. (9)

β = 1.4826 because the MEAD of a zero-mean, unit variance
normal distribution is 0.6745. Fig.4 plots proposed versus [2]
edge-strength adaptations for Tukey and Lorentzian C(∇I).
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Fig. 4. Proposed edge-strength adaptation (8).

The MAAD performs poor in highly noisy image (see
Fig.6) because it is less affected by extremes in the tail than
the MEAD (since the data in the tails have less influence on
the calculation of the median than they do on the mean [7]).
For ATD, the MAAD filters outliers, i.e., high noise is not
taken into account to find σe which means that σe is estimated
less than it should be. Also, the MEAD is especially useful in
noisy images because the average is “less edge-responsive”
than taking the median, i.e., taking the mean gives the edge
strength higher value. Thus the MEAD is more adaptive to
noise. Fig.7 confirms our observation above for Tukey as well
as for Lorentzian edge stopping function. Additionally, com-
puting the MEAN is less complex than the MAAD.

4. APPLICATIONS

Sample results are shown for the 1) Canal image that con-
tains both homogeneous and structured areas and also non-

(a) Lor., T = 300. (b) Tuk., T = 300.

(c) Prop. Lor., auto. T . (d) Prop. Tuk., auto. T .

Fig. 5. Smoothing of Mandril.

Gaussian artifacts such as blur; 2) Mandril image that con-
tains mostly high-structured area, and is also widely used in
the literature to test stability to high structure; 3) Lena that is
a moderately challenging image to test stability to noise.
Structure preservation with proposed stopping time:

Fig. 5 shows the performance of [2] edge-stopping functions
when applied to high-structure images with and without the
proposed function. As can be seen, when using the proposed
stopping-time function, image details using both Tukey and
Lorentzian are well preserved and no blurring is introduced.
Denoising with proposed stopping time: As discussed

earlier, Tukey edge stopping is edge robust (gives much less
blurring with high T ), but, and because of its robustness,
its performance decreases in high noisy images. Lorentzian
function denoises well high-noisy but not low-noisy images.
Thus both Lorentzian and Tukey adds unwanted artifacts to
the processed image. To enable an edge-stopping function to
differentiate between noise and edges we need to apply the
gradient on the image at multi-levels (higher iteration num-
ber). The proposed stopping-time stabilizes both Lorentzian
and Tukey functions as shown in Fig. 6 where significant
PSNR gain is achieved using the proposed stopping time.
Note that good performance with the proposed T was also
achieved in blurred (non-Gaussian noisy) images such asCanal;
results are not shown due to space constraints.
Denoising with proposed edge strength: As confirmed

in Figs. 7-9, the use of the MEAD, instead of the MAAD, de-
creases the residual spurious noise introduced by Tukey func-
tion, and this in turn preserves image structures. Moreover,
using the proposed σe, edges are more clear and smooth. Sim-
ilarly, when using Lorentzian edge stopping, even though it
is more forgiving than Tukey edge stopping, the MEAD im-
proves its performance from the point of view of taking the
mean values of the gradient in finding σe. This makes the
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Fig. 6. Effect of proposed stopping-time function.

(a) Prop. (b) Lor. (c) Prop. (d) Tuk.

(e) Org. (f) Noisy

Fig. 7. Denoising results, Lena 23dB, auto. T .

value of each pixel gradient proportion to its direct neigh-
bors. Therefore, an edge-stopping function using the pro-
posed edge-strength performs better than using [2] estimator.

Note in Fig. 8 the difference between the edge detection
which gives better understanding on how much the image was
enhanced (more edges means less denoising). As can be seen,
the proposed robust scale (or edge strength) parameter pro-
vides a compromise between too much blurring (Lorentzian)
and to strict (i.e., dense edges detected) smoothing (Tukey).
Fig.9 objectively confirms the superiority of the proposed

edge-strength estimator compared to Tukey estimator [2].

(a) Prop. (b) Lor. (c) Tuk.

Fig. 8. Edge detection results, Canal, auto. T .

10 15 20 25 30 35 40 45
20

25

30

35

40

45

Estimated noise in PSNR

A
ch

ie
ve

d 
P

S
N

R

Prop.
Tukey
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5. CONCLUSION

This paper proposed a new noise-adaptive stopping-time func-
tion that is fast and automates the iterative anisotropic diffu-
sion process. The paper also proposes a new estimator for the
scale parameter of edge strength based on mean absolute de-
viation. Our adaptive anisotropic diffusion method allows us
to effectively reduce the noise and better preserve small struc-
tures. The proposed adaptation of anisotropic diffusion gives
good objective results in term of PSNR to reduce noise and
subjective results in term of significantly less blurring than
using related work. Our study shows that estimation of T and
σe need not be computationally expensive.
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