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ABSTRACT

In this paper we propose a new method to reduce noise in digital im-
ages. The method is based on the bilateral filter. The bilateral filter
is a nonlinear filter that does spatial averaging without smoothing
edges. The spatial averaging aspect of the bilateral filter is very cru-
cial; the bilateral filter has been shown to work better than wavelet
thresholding in some recent papers. The proposed method improves
the bilateral filter through decomposing a signal into its frequency
components. In this way, noise in different frequency components
can be eliminated. Experimental results with both simulated and real
images are given. In addition to this new method, we also provide an
empirical study of the optimal parameter selection for the bilateral
filter.

Index Terms— Image enhancement

1. INTRODUCTION

There are different sources of noise in a digital image. Among the
noise sources, dark current noise is due to the thermally generated
electrons at sensor sites. It is proportional to the exposure time and
highly dependent on the sensor temperature. Shot noise is due the
quantum uncertainty in photoelectron generation; and it is charac-
terized by a Poisson distribution. Amplifier noise and quantization
noise occur during the conversion of number of electrons to pixel
intensities. The overall noise characteristics in an image depends
on many factors, including sensor type, pixel dimensions, temper-
ature, exposure time, and ISO speed. Noise is channel dependent.
Typically, green channel is the least noisy and blue channel is the
most noisy channel. (See Figure 1.) In single-chip digital camera,
demosaicking algorithms are used to interpolate missing color com-
ponents. That means, noise is in general not white. Noise in a digital
image has low-frequency (coarse-grain) and high frequency (fine-
grain) components. The high-frequency components are typically
easier to remove; it is difficult to distinguish between real signal and
low-frequency noise.

There have been many denoising methods developed over the
years, such as the Wiener filter, wavelet thresholding [1], anisotropic
filtering[2], bilateral filtering [3], total variation method [4], and
non-local methods [5]. Among these methods, wavelet thresholding
has been shown to be a highly successful method. In wavelet thresh-
olding, a signal is decomposed into approximation (low-frequency)
and detail (high-frequency) subbands, and the coefficients in the de-
tail subbands are processed via hard or soft thresholding [1, 6, 7, 8].
The hard thresholding eliminates (sets to zero) coefficients that are
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Fig. 1. Portion of an image captured with a Sony DCR-TRV27; and
its red, green, and blue channels. The blue channel is the most de-
graded channel. The noise apparently has low- and high-frequency
components.

smaller than a threshold; the soft thresholding shrinks the coeffi-
cients that are larger than the threshold as well. There are also other
thresholding techniques in addition to hard and soft thresholding.

The main task of the wavelet thresholding is threshold selec-
tion. In the SURE Shrink approach [8], the optimal threshold value
based on the Stein’s Unbiased Estimator for Risk (SURE) is esti-
mated. In the Bayes Shrink approach [9], the Bayesian Risk is mini-
mized under the assumption of generalized Gaussian distribution for
the wavelet coefficients. A major strength of the wavelet threshold-
ing is the ability to treat different frequency components of an image
separately; this is important because noise in real scenarios may be
frequency dependent.

The bilateral filter was proposed in [3] and is an alternative to
wavelet thresholding. It applies spatial weighted averaging without
smoothing edges. This is achieved by combining two Gaussian fil-
ters; one filter works in spatial domain, the other filter works in in-
tensity domain. Therefore, not only the spatial distance but also the
intensity distance is important for the determination of weights. At
a pixel location x, the output of a bilateral filter can be formulated
as follows:
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whereσd andσr are parameters controlling the fall-off of weights
in spatial and intensity domains, N (x) is a spatial neighborhood of
pixel I(x), and C is the normalization constant:
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Fig. 2. The contour plots of the MSE values between the original image and the denoised image for different values σd, σr , and noise standard
deviation σn. The test image is the standard gray-scale Lena image of size 512 × 512. From left to right, the noise standard deviations, σn,
are 5, 10, 20, and 30. In each plot, the x axis is σr , the y axis is σd.

In addition to image denoising applications, bilateral filters have
also been used in texture removal [10], tone mapping [11], volumet-
ric denoising [12], and others. Elad [13] shows that the bilateral filter
is a special case of the Jacob algorithm. This single iteration of Ja-
cob algorithm, which is known as the diagonal normalized steepest
descent, yields the bilateral filter. Durand and Dorsey [11] describes
a liberalized version of the filter that speeds up the filter. They ac-
celerate the bilateral filter by using a piecewise-linear approxima-
tion with FFT in the intensity domain and appropriate sub-sampling
in the spatial domain. Paris and Durand [14] later derives an im-
proved acceleration scheme for the filter. They express the filter in
a higher-dimensioned space where the signal intensity is added to
the original domain dimensions. The bilateral filter can be expressed
as simple linear convolutions in this augmented space followed by
two simple nonlinearities, so that they can derive simple criteria for
down-sampling the key operations and achieve acceleration.

One weakness of the bilateral filter is not being able to remove
salt-and-pepper type of noise. (Median filtering based operations
have been proposed to eliminate this weakness.) A second draw-
back of the bilateral filter is its single resolution nature. Unlike
the wavelet filter, the bilateral filter may not access to the differ-
ent frequency components of a signal. Although it is effective in
removing high-frequency noise, the bilateral filter fails to remove
low-frequency noise. Another issue with the bilateral filter is that
there is no theoretical work on the optimal values of the parameters,
σd and σr .

This paper is organized as followed. In Section 2, we analyze
parameters of the bilateral filter as a function of noise level. Based
on some simulation results, we show that the value of σr is more

important than the value of σd for varying noise levels. In Section
3 we will propose a multi-level bilateral filter based on wavelet de-
composition. In Section 4, we compare the proposed method with
Bayes Shrink [9], SURE Shrink [8] and the original bilateral filter
[3]. The experiment results show that the multi-level bilateral filter
works better than these methods visually.

2. PARAMETER SELECTION FOR THE BILATERAL
FILTER

There are two parameters that control the behavior of the bilateral
filter. Referring to (1), σd and σr characterizes the spatial and in-
tensity domain behaviors, respectively. Although these parameters
should be related to the noise and image characteristics, the issue
has not been studied yet. In this paper, we made an empirical study
of the optimal parameter values as a function of noise variance. We
added white Gaussian noise to some standard images and applied the
bilateral filter for different values of the parameters σd and σr . We
repeated the experiment for different noise variances and recorded
the mean squared error (MSE). A typical mean square error plot is
given in Figure 2.

As seen in Figure 2, the optimal σd value is relatively insensitive
to compared to the optimal σr . While σd value can be chosen as
constant somewhere around 2; σr should be chosen as a function
of σn. To see the relationship between σn and the optimal σr , we
set σd to a constant, and plot the optimal σr values as a function
of σn. Figure 3 shows plots for three standard images. As seen in
these plots, σr and σn are linearly related to a great degree. σr is
approximately equal to 1.7 × σn
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Fig. 3. The optimal σr values as function of noise standard deviation σn are plotted for three standard images. The image sizes are 512×512.
The x axis is σn while the y axis is the σr that produces smallest MSE.
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Fig. 4. Illustration of the proposed method. Image is decomposed
into its low- and high-frequency components through analysis fil-
ters. Bilateral filter is applied to low-frequency components; wavelet
thresholding is applied to high-frequency components.

3. PROPOSED METHOD

The denoising framework is illustrated in Fig 4. An image is de-
composed into its frequency subbands with wavelet decomposition.
(Note that the illustration treats the input as a one-dimensional sig-
nal and shows one approximation subband and one detail subband
at each scale of the decomposition; in reality, there will be four sub-
bands for a two-dimensional image at each scale.) The analysis and
synthesis filters (La, Ha, Ls, and Hs) form a perfect reconstruction
filter bank. The approximation subbands can be decomposed further;
in the illustration, there are two levels of decomposition.

In the illustration, two types of filtering are applied on the im-
age. The first one is the bilateral filtering, which is applied to the
image and its approximation subbands. The second is the wavelet
thresholding, which is applied to the detail subbands of the image.
The multi-resolution bilateral filtering is a generalization of the stan-
dard bilateral filtering. It provides the capability to treat different
frequency components of a signal individually. It is not necessary
to use the same or correlated bilateral filter parameters at different
scales. Bilateral filtering works in approximation subbands; how-
ever, some noise components can be identified and removed better
in detail subbands, for example, salt-and-pepper type of noise. The
wavelet thresholding part is optional but it provides this additional
capability to the framework.

In the previous section, we have shown that the bilateral filter
parameters should be related to the noise variance. There are dif-
ferent ways of estimating the noise levels in images and in different
subbands of an image. In our experiments, we used the robust me-

dian estimator [1, 9] to estimate noise variance. The method fits the
proposed framework well as it is also wavelet based. For the wavelet
thresholding, we used the Bayes Shrink soft-thresholding method
[9], which utilizes the same robust median estimator to determine
threshold values.

4. EXPERIMENTAL RESULTS

These images were denoised using four methods. The first method
is the BayesShrink wavelet thresholding algorithm [9]. Five decom-
position levels were used; the noise variance is estimated using the
robust median estimator [1]. The second method is the bilateral fil-
ter [3]. Based on our experiments discussed in the previous sections,
we chose the following parameters for the bilateral filter: σd = 1.8,
σr = 2 × σn, and the window size is 11 × 11. The third method
is the sequential application of [9] and [3]. The reason this method
was included is to see the combined effect of [9] and [3] and com-
pare it with the proposed method. The fourth method is the proposed
method. For the proposed method, db8 filters in Matlab were used
for one-level decomposition. For the bilateral filtering part of the
proposed method, we set the parameters as follows: σd = 1.8, the
window size is 11×11, and σr = 1.0×σn at each level. (In case of
the original bilateral filter, σr = 2 × σn was a better choice. How-
ever, for the proposed method this lead to a smaller PSNR value on
average. The reason is the double application of the bilateral filter
in the proposed method. When σr was large, texture in the images
was smoothed to produce low PSNR values. After some experimen-
tation, σr = 1.0 × σn turned out to be better in terms of PSNR
values. Here, we should note the fact that a higher PSNR does not
necessarily correspond to a better visual quality.) For the wavelet
thresholding part of the proposed method, the BayesShrink method
[9] was used; and the noise variance was estimated again with the
robust median estimator technique. To eliminate the border effects,
images were mirror-extended before the application of the bilateral
filter and cropped to the original size at the end. The PSNR results
are given in Table 1.

In the second experiment, we captured a still image with a digital
camera (Sony DCR-TRV27) in a low-light environment. We applied
the denoising algorithms to this image. Figure 5 shows crop of this
image and the denoising results for the Bayes Shrink, bilateral filter,
and the proposed algorithm. As demonstrated in these experiments,
the proposed method is producing very good visual results with real
images.
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Input Image σn BayesShrink [9] Bilateral Filter [3] [9] Followed by [3] Proposed Method
Barbara 512 × 512 10 31.25 31.37 30.92 31.79

20 27.32 27.02 27.16 27.74
30 25.34 24.69 25.23 25.61

Boats 512 × 512 10 31.98 32.02 31.81 32.58
20 28.55 28.40 28.43 29.25
30 26.71 26.57 26.66 27.24

Goldhill 512 × 512 10 31.94 32.08 31.93 32.48
20 28.69 28.90 28.80 29.50
30 27.13 27.50 27.34 27.77

Table 1. PSNR comparison of the BayesShrink method [9], the bilateral filter [3], sequential application of the BayesShrink [9] and the
bilateral filter [3] methods, and the proposed method. (The numbers are obtained by averaging the results of six runs.)

                             (a)                                                               (b) 

     
                             (c)                                                               (d) 

Fig. 5. (a) Input image, (b) Original bilateral filter [3], (c) Bayes
Shrink [9], (d) Proposed method with three-level decomposition.

5. CONCLUSIONS

In this paper we present a new image denoising method, which inte-
grates the bilateral filter and the wavelet thresholding together. We
decompose an image into low- and high-frequency components, and
apply bilateral filtering on the approximation subbands and wavelet
thresholding on the detail subbands. We have found that the opti-
mal σr value of the bilateral filter is linearly related to the standard
deviation of the noise. The optimal value of the σd is relatively in-
dependent of the noise power. Based on these results, we estimate
the noise variance at each level of the subband decomposition and
use the optimal σr value for bilateral filtering. The key factor in
the performance of the proposed method is the multiresolution ap-
plication of the bilateral filter. It helped eliminating the coarse-grain
noise in images. The wavelet thresholding adds power the proposed
method. We used a specific wavelet thresholding technique (i.e., the
BayesShrink method); it is possible to improve the results further by
using better detail-subband-denoising techniques or using redundant
wavelet decomposition.
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