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ABSTRACT
In this paper we address the image restoration problem in the
variational framework. Classical approachesminimize the Lp

norm of the residual and rely on parametric assumptions on
the noise statistical model. We relax this parametric hypothe-
sis and we formulate the problem on the basis of nonparamet-
ric density estimates. The proposed approach minimizes the
residual differential entropy. Experimental results with non
gaussian distributions show the interest of such a nonpara-
metric approach. Images quality is evaluated by means of the
PSNR measure and SSIM index, more adapted to the human
visual system.

Index Terms— deconvolution, variational methods, en-
tropy, nonparametric estimation

1. INTRODUCTION

Image restoration attempts to reconstruct or recover an image
that has been degraded by using a priori knowledge of the
degradation phenomenon. We focus on variational methods,
that have an important role in modern image research.
Most methods rely on the standard model y = m∗x0 +n,

where degradations are modeled as being the result of convo-
lution together with an additive noise term, so the expression
image deconvolution (or deblurring) is used frequently to sig-
nify linear image restoration [1]. Herem represents a known
space-invariant blur kernel (point spread function, PSF), x0

is an ideal version of the observed image y and n is (usually
Gaussian) noise.
The objective of restoration is to obtain an estimate x̂(u)

as close as possible to the original image, by means of a cer-
tain criterion. Defining with r = y − m ∗ x̂ the residual
image, a common approach to the deconvolution problem is
to find a solution that minimizes a function ϕ(·) of the resid-
ual. If ϕ(·) is the square function, we obtain a least square
(LS) solution of the problem. In classical statistics, Maxi-
mum Likelihood (ML) is the most commonly used method
for parameter estimation. Its application to image restoration
is based on the knowledge of the random properties of noise,
so that its probability density function (pdf) is exactly known.

In the case of additive Gaussian noise, the ML-method is
equivalent to the LS method. As it is well known, LS es-
timation is sensitive to outliers, or deviations, from the as-
sumed statistical model. In the literature other more robust
estimators have been proposed, like M-estimators [2], involv-
ing non-quadratic and possibly non-convex energy functions.
However, these methods rely on parametric assumptions on
the noise statistics, which may be inappropriate in some ap-
plications due to the contribution of multiple error source,
such as radiometric noise (Poisson), readout noise (Gaussian),
quantization noise (Uniform) and ”geometric” noise, the lat-
ter due to the non-exact knowledge of the PSF. Therefore den-
sity estimation using a nonparametric approach is a promising
technique since it allows to account for the actual distribu-
tion of the underlying random variable as opposed to making
assumptions on the distribution. We propose to minimize a
functional of the residual distribution, in particular the dif-
ferential entropy of the residual. We use entropy because it
provides a measure of the dispersion of the residual, in partic-
ular low entropy implies that the random variable is confined
to a small effective volume and high entropy indicates that the
random variable is widely dispersed [3]. Moreover, entropy
criterion is robust to the presence of outliers in the samples.
Nonparametric methods and information measures have been
recently used in the segmentation context [4, 5].
Experimental results with non gaussian distributions show

the interest of such a nonparametric approach. The quality of
restored images is evaluated by the largely used PSNR mea-
sure and also by means of the Structure Similarity (SSIM)
measure [6], more adapted to the human visual system (HVS).
This paper is organized as follows. In section 2 the pro-

posed algorithm is presented and in section 3 some experi-
mental results are shown. Finally, discussion and future works
are proposed in the last section.

2. ENERGY

Image deblurring is an inverse problem, that can be formu-
lated as a functional minimization problem. Let Ω denote
a rectangular domain in R2, on which the image function
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x : u ∈ Ω → Rd is defined, d being the image dimensional-
ity. Ideally, the recovered image x̂ satisfies

x̂ = arg min
x

∫
Ω

Φ(y−m ∗ x) du, (1)

whereΦ(·) is a metric representing data-fidelity. In the case of
Gaussian noise, a quadratic function is used. However, para-
metric assumptions on the underlying noise density function
are not always suitable, due to the multiple source of noise.
We define as energy to be minimized a continuous version of
the Ahmad-Lin [7] entropy estimator (HA−L(r)), defined as:

E(x) = |Ω| HA−L(r)

= −
∫

Ω

log(px(r(u))) du . (2)

In order to solve the optimization problem arg minx E(x) a
steepest descent method is used. The energy derivative has
been analytically calculated and it is shown in section 2.1.

2.1. Derivative of E

The residual pdf is estimated by using a nonparametric con-
tinuous version Parzen estimator, with symmetric kernelK(·),

px(s) =
1

|Ω|
∫

Ω

K(s− r(u)) du . (3)

Note that px(s) is the residual pdf associated to the current
estimate image x. Therefore changes in x provides changes
in px(s), hence changes in the residual entropy (energy).
By taking the Gâteaux derivative of eq.(2) it can be shown

(demonstration has been omitted for brevity) that the gradient
of E(x) at v ∈ Ω is equal to

∇E(x)(v) =

∫
Ω

m(v − w) k(w) dw, (4)

with
k(w) =

∇px(r(w))

px(r(w))
+ χ(w) (5)

and
χ(w) = − 1

|Ω|
∫

Ω

∇K(r(u)− r(w))

px(r(u))
du . (6)

The first term in (5) is the normalized gradient of the
residual pdf and it is proportional to the local mean-shift [8]:

∇px(X)

px(X)
=

d + 2

h2
Mh(X), (7)

where
Mh(X) =

1

k

∑
Xi∈Sh(X)

(Xi −X) (8)

is the sample mean shift of the observations in the small re-
gion Sh(X) centered at X (Sh(X) = {Y : ‖Y −X‖2 ≤

h2}). The integral in (6) is difficult to estimate, however if
the Parzen kernel K(·) has a narrow bandwidth, only sam-
ples very close to the actual estimation point will contribute
to the pdf. Under this assumption the residual pdf is approxi-
matively px(α) ≈ N(α)/|Ω|, where N(α) is the measure of
Ωα = {u ∈ Ω : r(u) = α}. The set {Ωα}α∈r(Ω) form a
partition of Ω. Thus we have,

χ(w) ≈ −
∫

r(Ω)

dα
∫

Ωα

∇K(α− r(w))

N(α)
du

= −
∫

r(Ω)

∇K(α− r(w)) dα . (9)

Since ∇K(·) is an odd function, χ(w) is zero if r(w) is such
that the support of∇K(α−r(w)) is contained by the support
of r(·) and assumes nonzero values in a ring near the bound-
ary of the latter. In grayscale images (d = 1), the integral
(9) can be expressed in closed form and χ(w) has the same
sign of the mean shift term but has a smaller magnitude. In
the multidimensional case χ(w) conserves the same behavior,
therefore it is possible to neglect it.
Thus the steepest descent algorithm is performed with the

following evolution equation:

x(n+1) = x(n) − ν
d + 2

h2
m � Mh(X), (10)

where ν is the step size. The choice of h is explained in sec-
tion 3.

2.2. Lower Bound

In this section we provide a lower bound (LB) to the energy
in eq.(2), in order to check how our algorithm works on min-
imizing residual entropy (see Fig.1).
The residual can be viewed the sum of two random vari-

ables, namely, R = N + X̃ . The first one is the noise, and
the second one is the projection of the error by means of the
operatorm(·), i.e., x̃ = m ∗ (x0 − x).

Proposition 2.1. The residual entropy h(R) is lower bounded
by the noise entropy h(N).

Proof. Let us consider the mutual information betweenR and
X̃ ,

I(R; X̃) = h(R)− h(R|X̃)

= h(R)− h(N |X̃) .

Since the noiseN is independent from X̃ , h(N |X̃) = h(N),
and by the non negativity property of mutual information we
obtain

h(R) ≥ h(N) . (11)
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Fig. 1. Residual Entropy as function of noise entropy. Initial
residual entropy (blue), Final residual entropy (green), Theo-
retical lower bound (red).

As it is well known, mutual information is a measure of
the amount of information that one random variable contains
about another random variable [3]. The closer x is to the orig-
inal image x0, the less information on X̃ is carried by the
residual. Therefore entropy minimization can be interpreted
as the process which use the information carried by the resid-
ual to recover x0, until there is no more information, i.e., the
residual entropy reaches the lower bound.

0 0.5 1 1.5 2 2.5 3 3.5
25

26

27

28

29

30

31

Noise Entropy (bits)

P
S

N
R

 (d
B

)

Final PSNR
Initial PSNR

(a) PSNR

0 0.5 1 1.5 2 2.5 3 3.5
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Noise Entropy (bits)

S
S

IM
 In

de
x

Final SSIM
Initial SSIM

(b) SSIM

Fig. 2. Algorithm performances for uniform noise as function
of noise entropy. (a) Initial (blue) and Final (red) PSNR; (b)
Initial (blue) and Final (red) SSIM.

3. EXPERIMENTAL RESULTS

In this section, some results from the algorithm proposed are
shown. In order to measure the performance of our algorithm
we blurred the Lena image (512x512 pixel) by convolving it
with a 13x13 Gaussian PSF with standard deviation

√
3, and

adding noise with different distributions, such as Gaussian,
Uniform, Gaussian mixture, Gaussian-Uniform mixture and
different entropy magnitude. Residual entropy minimization
is carried out via the gradient descent algorithm described in
section 2.1. At each iteration the mean-shift kernel size h is
proportional to the standard deviation of the residual, since
this choice generally assures a good compromise between ro-
bustness and accuracy [9].
Fig.1 shows in blue the initial residual entropy, in green

the value attained when the algorithm converges and in red the
theoretical LB. We considered Gaussian noise in Fig.1a and
Uniform noise in Fig.1b. In the gaussian case the proposed
algorithm achieves the lower bound of entropy. However, in
the uniform case as well the final entropy is quite close to the
LB with a maximum relative difference of 0.02%.
Fig.2 shows the PSNR and SSIM measures between the

original image x0 and the degraded image y (blue) and the re-
stored image x̂ (red) in function of the noise entropy for uni-
form distribution. PSNRmeasure and the related mean square
error (MSE) are the simplest and most widely used quality
metrics in image processing, with clear physical meanings,
but they are not very well matched to perceived visual quality
[6]. HVS is highly adapted for extracting structural informa-
tion, and SSIM, which compares local patterns of pixel inten-
sities, is more suitable for image quality assessment. Fig.(3)
shows the restored images from different algorithms as Lucy-
Richardson [10, 11] and Truncated SVD [12], with uniform
noise (entropy 2 bits). The truncation parameter of TSVD is
found with a generalized cross validation [12]. Our method
has roughly the same PSNR of the TSVD restored image,
however the latter has a more pronounced grain effect. This is
well catched by the SSIM measure, for which our method is
considered of higher quality. SSIM indicates better results
also in the experiment of Fig.4, where a gaussian mixture
noise has been used, even if the PSNR is lower than the one
provided by the TSVD restoration. A full set of comparisons
is shown in Table1 for different noise distributions and en-
tropy values. The proposed algorithm always outperforms the
other techniques except that in the two aforementioned cases
for the PSNR value.

Noise Algorithm PSNR SSIM
(dB) ∈ [0, 1]

Gaussian Lucy-Richardson 25.31 0.881
1 bit Truncated SVD 29.59 0.908

Proposed method 29.65 0.922
Gaussian Lucy-Richardson 25.29 0.880
2 bits Truncated SVD 29.15 0.890

Proposed method 29.16 0.895
Uniform Lucy-Richardson 25.31 0.881
1 bit Truncated SVD 29.53 0.906

Proposed method 29.59 0.918
Uniform Lucy-Richardson 25.28 0.878
2 bits Truncated SVD 29.04 0.882

Proposed method 29.03 0.900
Gaussian Lucy-Richardson 25.31 0.879
Mixture Truncated SVD 28.93 0.876
1.85 bits Proposed method 25.94 0.899
G + U Lucy-Richardson 25.32 0.881
Mixture Truncated SVD 29.66 0.913
0.7 bits Proposed method 29.80 0.926

Table 1. Quality measures comparison of Lena restored im-
ages with different algorithm.
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(a) Degraded image (b) Lucy-Richardson

(c) Truncated SVD [12] (d) Proposed method

Fig. 3. Comparison of deconvoluted images. Uniform
noise, entropy 2 bits. (a) The blurred noisy image (PSNR
= 25.30[dB], SSIM = 0.837)

4. DISCUSSION

This paper presented a deconvolution method in the varia-
tional framework based on the residual entropy minimiza-
tion. The simulations indicated robust performance for dif-
ferent noise distribution probabilities, showing in many cases
slightly better results w.r.t. some popular deblurring tech-
niques. Results are even more promising considering that,
contrarily to what happens in other techniques like Truncated
SVD, no regularization is applied. As future work, a possible
regularization method is being taken into account that makes
use of the Kullback-Leibler divergence between the residual
distribution and the noise model, under the hypothesis that
some a priori knowledge is available on the noise. A further
remarkable property of this algorithm is its possible extension
to the case of multispectral images.
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