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ABSTRACT

In this paper we propose a new multidimensional filtering

method based on fourth order cumulants to denoise of data

tensor impaired by correlated gaussian noise. We overview

the multidimensional Wiener filtering that overcomes the well

known lower rank-(K1, . . . , KN ) tensor approximation. But

this method only exploits second order statistics. In some ap-

plications, it may be interesting to consider a correlated Gaus-

sian noise. Then, we propose to introduce the fourth order

statistics in the denoising algorithm. Indeed, the use of fourth

order cumulants enables to remove the Gaussian components

of an additive noise. Qualitative results of the improved mul-

tidimensional Wiener filtering are shown for the case of noise

reduction in hyperspectral imagery.

Index Terms— denoising, tensor, cumulants, wiener.

1. INTRODUCTION

Some multidimensional denoising methods have been emerg-

ing for some years. Actually, the need of such methods is

becoming interesting since there are many multisensor appli-

cations now. For instance hyperspectral imagery lead to a

collection of images in several hundreds of contiguous spec-

tral bands. This paper proposes an extension of the classi-

cal multidimensional filtering, namely Higher Order Singu-

lar Value Decomposition (HOSVD) [1] or Multidimensional

Wiener Filtering [2, 3].

In these studies, the multidimensional data set R of size

I1 × I2 × . . . × IN are often impaired by additive white Gaus-

sian noise N statistically independent from the signal X (R =
X + N . Then, the estimated signal tensor X̂ can be obtained

using a multidimensional filtering that can be written using n-

mode products as X̂ = R×1 H1×2 H2×3 . . .×N HN [2, 3].

Each dimension of a N th order tensor is denoted by n-mode.

For instance, a hyperspectral image can be modeled as a third

order tensor whose three modes are rows, columns (both cor-

responding to pixel localization) and spectra. Each matrix

H(n) can be called n-mode filter [2, 3]. It is a projector on

the Kn dimensional n-mode signal subspace. For HOSVD or

Lower Rank Tensor Approximation (LRTA), H(n) is a sim-

ple projector [1] whereas it is obtained from the minimiza-

tion of the mean squared error in multidimensional Wiener

filtering [2, 3]. All these techniques are based on TUCKER3

tensor decomposition [4] that generalizes the matrix SVD.

The computation of each processing can only be run thanks

to an Alternative Least Square (ALS) loop. That is an itera-

tive algorithm that permits to jointly estimate n-mode filters

H(n), n = 1 . . . N .

In this paper, we propose to improve the multidimensional

denoising methods in the case of an additive correlated Gaus-

sian noise. For that purpose, we use fourth order cumulants

to eliminate the Gaussian components of the additive noise.

2. MULTIDIMENSIONAL WIENER FILTERING

2.1. Tensor flattening

A tensor can be turned into a n-mode matrix (Fig. 1). The

n-mode flattening matrix An of a tensor A ∈ R
I1×...×IN is

defined as a matrix [1] from R
In×Mn where :

Mn = I1 . . . In−1In+1 . . . IN .

Fig. 1. Flattening matrices for a third order tensor A.

Therefore, in our problem, Rn,Xn, and Nn are respec-

tively the n-mode flattening matrices of data, signal and noise

tensors.

2.2. Multidimensional Wiener Filtering

We represent a noisy multidimensional data set as a tensor re-

sulting from a multidimensional signal X impaired by an ad-
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ditive white noise N [5]. Multidimensional Wiener Filtering

(MWF ) aims at estimating the desired signal X from data

tensor R using multilinear algebra tools.

The optimal n-mode filter H(n) is obtained through the

minimization of the mean squared (MSE) error: e(H(1),H(2),H(3)) =

E

[∥∥∥X − X̂
∥∥∥2

]
. The computation of n-mode filters H(n) is

performed using an Alternating Least Squares (ALS) algo-

rithm. In this iterative algorithm, the n-mode filters are ini-

tialized by corresponding identity matrices. Every m-mode

filter H(m) fixed, m �= n, the expression of the optimal n-

mode filter H(n) is [2] :

H(n) = V(n)
s Λ(n)V(n)T

s , (1)

with :

Λ(n) = diag

⎛
⎝λγ

1 − σ
(n)2

γ

λΓ
1

, . . . ,
λγ

Kn
− σ

(n)2

γ

λΓ
Kn

⎞
⎠ (2)

where, λγ
i and λΓ

i , i = 1 to Kn, are respectively the Kn

first eigenvalues of signal and data n-mode covariance ma-

trices E[XnX̂T
n ] and E[X̂nX̂T

n ] [2]. The noise power σ
(n)2

γ

is estimated by computing the average of the In − Kn small-

est eigenvalues of E[RnRT
n ]: σ̂

(n)2

γ = 1
In−Kn

∑In

i=Kn+1 λγ
i .

The computation of n-mode filters (Eqs. (1) and (2)) involves

the n-mode rank values K1,K2 and K3.

However, when MWF is applied for images, some arti-

facts can occur when few rows or columns are redundant. In

this case, the dimension of signal subspace may be underes-

timated. Consequently H(1),H(2) and H(3) are not correctly

estimated.

2.3. n-mode signal subspace dimension

In fact, as MWF is an extension of the singular value de-

composition (SVD) truncation, it is obvious that some parts

of the reconstructed image are missing after truncation. This

is because the image information is spread over a large signal

subspace.

Each singular vector V(n)
s , n = 1, 2, 3, is estimated by the

truncation of n-mode covariance matrices E[RnRT
n ] SVD.

That is, keeping the Kn singular vectors associated with the

Kn highest singular values of E[RnRT
n ], n = 1, 2, 3.

Consider two noisy images Ra and Rb containing the

same features but otherwise disposed, such that K
(b)
n < K

(a)
n ,

where K
(l)
n is the n-mode rank of Rl, l ∈ {a, b} -for example

Ra contains a diagonal straight line and Rb a vertical straight

line-. Each n-mode flattening matrix SNR can be defined as

follows :

SNR =
∑K(l)

n
i=1 λ

(n)
i∑K

(l)
n

i=1 σ2
=

∑K(l)
n

i=1 λ
(n)
i

K
(l)
n · σ2

, (3)

where λ
(n)
i is the ith eigenvalue of the n-mode signal flatten-

ing matrix Xn and σ2 is the additive white noise power. As-

suming an equal signal energy in each n-dimension,
∑K(a)

n
i=1 Λ(n)

i

=
∑K(d)

n
i=1 Λ(n)

i = P , where Λ(n)
i = λ

(n)
i + σ2 is the ith

eigenvalue of the n-mode data flattening matrix Rn, SNR
becomes :

SNR(K(l)
n ) =

P − K
(l)
n · σ2

K
(l)
n · σ2

=
P

K
(l)
n · σ2

− 1 (4)

Eq. (4) clearly emphasizes that SNR(K(b)
n ) > SNR(K(a)

n ).
Thus, it is interesting to have the smallest n-mode ranks val-

ues. The case is very easy when there is only straight lines in

images, because rank reduction is more obvious: a rearrange-

ment of data such that a diagonal line is turned into a vertical

line. In the case of real-world image, we assume that there

are several directions that carry most of information. Along

these directions, the n-mode ranks are as small as possible.

2.4. Tensor Main Directions

In [3], the multidimensional Wiener filtering based on rear-

rangement of data (MWFR) has been proposed. It has been

dealing with finding the main directions in a tensor thanks to

an array processing method. In this paper, we propose to use

the classic Hough transform to find the main directions. In

this approach, a straight line is mapped to a bright point in the

Hough plane (ρ, θ), where ρ is the distance of the desired line

from the origin and θ is the orientation of the line. Then, we

are looking for the brightest points in the Hough domain.

For hyperspectral images or color images, we have to com-

pute the mean image in the spectral mode before applying the

Hough transform. Then we can obtain the brightest points,

corresponding to main straight line-like features. Fig. 2 de-

picts the Hough transform of a hyperspectral image. The

brightest points correspond to orientations 0◦ and 34◦.

Hyperspectral image

Hough transform

θ

ρ

−80 −60 −40 −20 0 20 40 60 80

−100

0

100

Fig. 2. Hyperspectral image and its Hough transform. The
brightest points correspond to 0◦ and 34◦.

In our application, the offset ρ does not matter. Thus,
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the computational time of such a simple Hough transform is

0.017 seconds on a 2.66Ghz Dual Core 2 running MATLAB.

2.5. MWFR algorithm

We denote by MWFR the MWF using the retrieval of main

directions. It is an Alternating Least Squares algorithm that

can be sum up as follows :

• Input : Data tensor R
• Initialization k = 0 :

X 0 = R ⇐⇒ H(n),0 = IIN
∀n = 1 . . . N .

• Detection of main directions θk using Hough transform

and keeping its brightest points corresponding to the

direction of smallest n-mode ranks.

• ALS loop:

while ‖X k+1 −X k‖ > ε

1. for each main direction θk :

(a) Rotation of the data tensor of angle θk

(b) Estimation of n-mode filters H(n)

i. X k
n = Ri ×1 H(1),k+1 ×2 . . . ×n−1

H(n−1),k+1×n+1H(n+1),k×n+2 . . .×N

H(N),k.

ii. n-mode flatten X k
n into matrix X(n),k

n =
Rn(H(1)

k+1⊗. . .⊗H(n−1)
k+1 ⊗H(n)

k ⊗. . .⊗
H(N)

k )

iii. compute matrices C(n),k = X(n),k
n RT

n

and D(n),k = X(n),k
n X(n),kT

n .

iv. Process C(n),k and D(n),k Kn first eigen-

values λγ
i and λΓ

i corresponding to the

Kn eigenvectors vi,s; i = 1 . . . Kn.

v. Compute H(n) = V(n)
s Λ(n)V(n)T

s .

(c) Multidimensional Wiener filtering X k+1 =
Ri×1H(1),k+1×2. . .×n−1H(n−1),k+1×n+1

H(n+1),k+1 ×n+2 . . . ×N H(N),k+1.

(d) k ← k + 1.

(e) Rotation of the filtered tensor of angle −θk

2. Average of every filtered tensor on the different

directions.

• Output : Estimated signal tensor X̂ , which is the com-

bination of every X̂ ks . Here, ks is the convergence it-

eration index.

2.6. Second order statistics in MWFR algorithm

It is possible to give a statistical sense to matrices C(n),k and

D(n),k from step 1(b)iii. Let us define x(n),k
j , j = 1, . . .Mn,

the n-mode vectors of tensor X (n),k, i.e. n-mode flattening

matrix X
(n),k
n column vectors. Let us define as well r(n)

j , j =
1, . . . Mn, the n-mode vectors of tensor R. Matrix C(n),k =
X(n),k

n RT
n can be written as:

C(n),k = [x(n),k
1 , . . . ,x(n),k

Mn
][r(n)

1 , . . . , r(n)
Mn

]T =
Mn∑
j=1

b(n),k
j r(n)T

j

We have quite the same expression for matrix D(n),k.

As a consequence, up to the multiplicative factor 1
Mn

, ma-

trices C(n),k and D(n),k are an estimation of the covariance

matrix between data tensor R (X(n),k in the case of D(n),k)

n-mode vectors and tensor X (n),k n-mode vectors.

Considering, in the previous expression of matrices C(n),k

and D(n),k, that {r(n)
j , j = 1, . . .Mn}, and {x(n),k

j , j =
1, . . . Mn} are the Mn realizations of two random vectors r(n)

and b(n),k associated respectively with the n-mode vectors of

data tensors R and X (n),k, matrices C(n),k and D(n),k can be

written as a second order moment: C(n),k = E[x(n),kr(n)T

]
and D(n),k = E[x(n),kx(n)T

], where E[·] denotes the expec-

tation operator.

3. IMPROVEMENT THROUGH FOURTH ORDER
CUMULANT

In practice, the noise whiteness and gaussianity are not always

fulfilled conditions. The use of higher order statistics consists

to eliminate the noise Gaussian components [6]. As remarked

in previous section, n-mode covariance matrices C(n),k and

D(n),k are defined as second order moments. They can be re-

placed by fourth order cumulants [6]: O(n),k = Cum(x(n),k

,x(n),kT

, r(n), r(n)T

) and Q(n),k = Cum(x(n),k,x(n),kT

,

x(n),x(n)T

). In practice, in order to reduce the computational

load, a cumulant slice matrix of C(n),k can be computed. The

cumulant slice matrix associated with the first component of

vector x(n),k, is given by the following (In × In)-hermitian

matrix [6, 7]: O(n),k
1 = Cum(x(n),k

1 ,x(n),kT

1 , r(n), r(n)T

).
The generic (i, j)-term of cumulant slice C(n),k

1 expressed

with the expectation operator is: O(n),k
1ij = E[x(n),k2

1 r
(n)
i r

(n)
j ]−

2E[x(n),k
1 r

(n)
i ]E[x(n),k

1 r
(n)
j ].

The practical estimation of O(n),k
1 uses the Mn realiza-

tions of random vectors r(n) and x(n),k. Defining by b
(n),k
ij

and r
(n)
ij the (i, j)-term of X(n),k

n and Rn n-mode unfolding

matrices, the estimation of O(n),k
1ij term is given by:

C(n),k
1ij = 1

Mn
(
∑Mn

p=1 b
(n),k2

1p r
(n)
ip r

(n)
jp )

− 2
M2

n
(
∑Mn

p=1 b
(n),k
1p r

(n)
ip )(

∑Mn

p=1 b
(n),k
1p r

(n)
jp )

(5)

The cumulant slice matrix permits to reduce the computa-

tional load involved by the whole fourth order cumulants but
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give similar results. In the following we use this expression

instead of the second order moments in the MWFR algo-

rithm.

4. EXPERIMENTAL RESULTS

In the following simulations, the proposed method using fourth

order cumulants in the improved MWFR algorithm is ap-

plied on hyperspectral images. In the following experiments,

the signal-to-noise ratio is defined as SNR

= 10 · log
‖X‖2

‖N‖2 . Before presenting some results, we introduce

a quality criterion to quantify a posteriori the quality of the

estimation : QC(X̂ ) = 10 · log

(
‖X‖2

‖X̂−X‖2

)
.

We model the additive correlated Gaussian noise as : N =
Nw ×1 W (1) ×2 W (2) ×3 W (3), where Nw is a white Gaus-

sian noise, statistically independent from the signal, and ∀n =
1, 2, 3, W (n) are weighting matrices which make the correla-

tion between the n-modes. We consider real-world data hy-

perspectral images, obtained by HYDICE [8]. HYDICE is

an airborne sensor which collects post-processed data in 210

wavelengths: 0.4 - 2.5 μm. Spatial resolution is 1.5 m and

spectral resolution is 10 nm. We propose to depict the de-

noising on a hyperspectral image in Fig. 3.

We consider the image impaired by an additive correlated

Gaussian noise as described earlier. We show that the filtering

taking into account fourth order cumulants permit to improve

significantly the result, compared to the MWFR based on

second order moments.

4 6 8 10 12 14 16
12

14

16

18

20

22

24

Q
C

 (d
B

)

SNR (dB)

Fig. 3. Interest of fourth order cumulants (red stars) com-
pared to second order moments (black circles).

An illustration of the algorithm output is given in Fig. 4.

Showing that the denoising is improved when fourth order

cumulants are taken into account.

5. CONCLUSION

In this paper, we have extended the multidimensional Wiener

filtering so that it is possible to remove additive correlated

(a) (b) (c)

Fig. 4. (a) Additive correlated Gaussian noised image SNR=8
dB, (b) MWFR QC = 10.2dB, (c) fourth order cumulants
in MWFR QC = 12.4dB.

Gaussian noise from multidimensional data. For that purpose

we introduce the fourth order cumulant slice matrix in the

MWFR algorithm. This algorithm has been developed to

take care of the data set specificities. Actually, it considers

that multidimensional images contain several directions that

focused most of information. This permits to reduce the rank

of each flattening matrix. Some encouraging simulations are

given in the last part of the paper for hyperspectral images.
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