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ABSTRACT
Most existing nonlinear regression filtering techniques for im-
age denoising are claimed to be edge preserving without con-
sidering the pixel position information. This will cause speck-
ling effects on the denoised image and inconsistent smooth-
ing in the vicinity of texture-rich areas. This paper proposes
a novel denoising method to address this problem. The pro-
posed method removes the low to intermediate noise using
edge-preserving range filtering, thereby removing short, false
edges. The updated edge map is used for subsequent filter-
ing in which pixel intensities are smoothed according to their
minimum distance to the closest edge point. This procedure
is carried out in an iterative scheme until the edge map sta-
bilizes. We compare existing denoising algorithms with the
proposed method. Experimental results validate the effective-
ness and efficiency of the proposed method.

Index Terms— image denoising, wavelet shrinkage, par-
tial differential function, bilateral filtering, local data adaptive

1. INTRODUCTION

Image denoising is widely used as the first step in image regis-
tration, image compression, and other related areas. In many
applications, image denoising is used to produce good esti-
mates of the original image from noisy observations. The re-
stored image should contain less noise than the observations,
while preserving detailed information such as edges.
Approaches for image denoising reside in three main cat-

egories: Wavelet-based thresholding such as wavelet shrink-
age; Various spatial kernel regression approaches such as bi-
lateral filtering; Methods with partial differential equations
(PDE). Methods using wavelet shrinkage [1] appropriately
modify (or suppress) small coefficients to remove noise from
the reconstructed image. However, the assumption that small
absolute value coefficients are likely dominated by noise is
not always true when the energy of Gaussian additive noise
is large. Bilateral filtering [2] combines closeness and sim-
ilarity filtering. The similarity filtering is designated to pre-
serve edges since the intensity closeness across edges is large.
However, this scheme is deficient at handling speckle pixels
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whose intensity values are either much larger or smaller than
those of their neighboring pixels. The similarity smoothing
effect is close to zero when the range gap is large. The idea
behind fourth-order PDF [3] is to minimize a cost function
proportional to the absolute value of the Laplacian of the im-
age intensity function. Fourth-order PDF has the same prob-
lem as bilateral filtering at handling speckles in noisy images,
since the cost function is designed to increase reciprocally
with the absolute value of the Laplacian.
This paper proposes a novel denoising method that ad-

dresses the deficiencies of existing methods for speckle and
heavy noises. The proposed method removes the low to inter-
mediate noise using an edge-preserving range filter, thereby
removing short false edges. The updated edge map is used for
subsequent filtering in which pixel intensities are smoothed
according to their minimum distance to the closest edge point.
This procedure is carried out in an iterative scheme until the
edge map stabilizes.
The remainder of this paper is organized as follows. In

Section 2, our feature-preserving nonlinear regression method
is presented. Section 3 presents the results of the proposed de-
noising method on test images with varying levels of additive
white Gaussian noise. Finally, Section 4 presents a summary.

2. PROPOSED DENOISING ALGORITHMS

In this section we present the motivation for a more efficient
denoising algorithm, and the formulation of our local-data-
adaptive kernel and edge distance filtering algorithm.

2.1. Local Data Adaptive Kernel

As discussed in [4], many denoising schemes such as wavelet
transformation and bilateral filtering can be categorized as
certain type of kernel regression process, i.e., approximat-
ing the original signal with a linear combination of the con-
volutions with a selected kernel. Local-data-adaptive kernel
regression considers both the sample location and the inten-
sity properties of the local data. Therefore, the effective size
and strength of the kernel is adaptive to the local image fea-
ture. The kernel for intensity value y at position x and inten-
sity values {yi} in the neighborhood {xi} can be denoted as
Kadapt(xi − x, yi − y).
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Therefore, the task of denoising becomes one of finding
such a kernel that is adaptive to the local image feature. One
of the most often used image features is the edge map. An
edge is a sequential link of the first-directional-derivative’s
maxima and minima in the direction of the gradient. The
common idea is that in areas near edges, the kernel orien-
tation should be along the edge direction rather than across
it, and the kernel size should be small. For the areas some
distance from an edge, the kernel size can be relaxed for fast
regression. Assume that the edge map is known for a given
image, it is intuitive to employ a kernel whose radius corre-
sponds to the closest edge pixel in the horizontal and vertical
directions, respectively. That is,

Kadapt(xi − x, yi − y) = G(yi − y, σs)KG, (1)

where
KG = ρ(ux(x), uy(x))G(xi − x, σx) (2)

where ux(x) represents the minimum horizontal distance
from the kernel center, x, to the neighboring edge pixel. Simi-
larly uy(x) represents the minimum distance from kernel cen-
ter, x, to the neighboring edge pixel in the vertical direction.
Note that ux(x) and uy(x) correspond to the local gradient
structure. ρ(·) is a pillbox function centered at the kernel, that
limits the kernel support to a certain radius such that

ρ(ux(x),uy(x))=

⎧⎪⎨
⎪⎩

0, if ‖xi − x‖ ≥ a (3a)

a=min(
√

ux(xi)2+uy(xi)2, rmax)

1, otherwise, (3b)

where rmax is a predefined maximum contour radius that
prevents the kernel from expanding too much in flat areas.
If we use a Gaussian kernel, the terms at the right side of

Equation 1 and Equation 2 can be represented mathematically
as shown below.

G(yi − y, σs) = exp

(
−

(yi − y)2

2σs
2

)
, (4)

where σs controls the smoothing on intensity offsets.

G(xi − x, σx) = exp

(
−
‖xi − x‖2

2σx
2

)
, (5)

where σx is the scale factor that determines the smooth-
ing. It is defined as

σx =
g + α

α
σc, g =

√
Î2
x + Î2

y , (6)

where α > 1 is a regularization constant that prevents
σx from becoming extremely large, Îx and Îy denote the
smoothed first derivative at xi in the x and y directions, re-
spectively. It is easy to see that g is the magnitude of the
gradient at xi.

Figure 1 shows an example of how KG adapts to vari-
ous local data structures of the Lena image. Note that in flat
areas, it is spread out to suppress the noise while depending
on the underlying features. Also note that the scale factor,
σx, is relatively large to remove speckle pixels in the flat ar-
eas, whereas in texture-rich areas, the contour size is small
to preserve the details. For the special case edge pixels, even

Noisy image, σn = 5
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Fig. 1: Examples of kernel adaptive to the local data structure.
The image is degraded by adding additive White noise with
σn = 5. Circles show the areas covered by the kernels.

though they generally have high gradient magnitude, which
results in a relatively high σx value in G(xi−x, σx), it is
penalized by ρ(ux(x), uy(x)), which equals to zero when
ux(x)=uy(x)=0. Therefore, the information at edge pixels
is preserved.
The potential pitfall of the combination term, KG, is that

it assumes a reliable edge map is available. However, this is
not always true in practice, particularly if a noise disturbance
exists. If some pixels are falsely categorized as edge pixels
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due to noise, the above combination term is not able to re-
move them. Observations indicate that the false edges from
noisy pixels are generally of smaller intensity offset from the
neighboring pixels if compared to true edge pixels. As a re-
sult, it is possible to remove them by the kernel term in Equa-
tion 4. Accordingly, the steps of thinning and hysteresis in the
Canny edge detector [5] remove the spurious oscillations ef-
fectively. Edge maps generated by the Canny method contain
structural information that is more stable than single feature
points.

2.2. Iterative Regression

Our proposed denoising kernel is adaptive to the combination
of true image information and the noise information. Con-
sequently, it is more effective in an iterative scheme in that
the output image of each iteration is closer to the underlying
genuine data feature, which in turn optimizes the proposed
kernel in next iteration. The proposed iterative algorithm is
presented below:

1. Initialize a counter n = 0 for original image I0.

2. Get an edge map En from image In using Canny edge
detector, followed by Euclidean Distance Transform.

3. Apply similarity filtering defined in Equation 4.

4. Apply filtering defined in Equations 1 and 5, the output
image is In+1.

5. Perform Canny edge detection on In+1 again to obtain
edge map En+1, and then En+1 = En+1 ∧ En.

6. Exit loop if the following stop criterion is satisfied, oth-
erwise increment the counter n = n + 1 and go back to
step 2.

∃i : ψ(En+1, En)<εE ∧MSE(In+1, In)<εI , (7)

where

ψ(En+1, En) =
m(En)−m(En+1)

m(En)
, (8)

where m(En) is the number of edge pixels in image
En, MSE(·) is defined in Equation 14. 0 < εE < 1,
εI > 0 is desirable change amount of edge map and
intensity values, respectively.

2.3. Edge Distance Filtering (EDF)

Edge Distance Filtering is the linear combination of the
weighted average of pixel values in the neighborhood in
which the weights are determined by the Edge Distance dif-
ference between the pixel at the kernel center, x, and its
neighboring pixels, xi, in addition to geometric distance:

KEDF = G(u(xi,x), σu)G(xi − x, σx), (9)
where

u(xi,x) = ‖u(xi)− u(x)‖. (10)
u(xi) is the Euclidean distance from xi to its closest edge

pixel. σu denotes the smoothing scale factor. g(xi,x) is de-
fined in Equation 5. If we use a Gaussian kernel, then

G(u(xi,x), σu) = exp

(
−

u(xi,x)2

2σu
2

)
. (11)

If we use σu → 0, such that

G(u(xi,x), σu) = 1, if u(xi) = u(x) (12)
G(u(xi,x), σu) → 0, otherwise

We further enforce the condition such that:

S = {xi : u(xi) = u(x), i = 1, 2, 3, ..., k} (13)
∀ xi : xi ∈ {Nj | ∀xj ∈ S}, i 	= j, i, j = 1, 2, ..., k.

Noisy image, σn = 5

Fig. 2: Example of 1-D EDF filter contour for Lena with
σn = 5. The EDF filter centers at [230, 279] with a radius
of 10 pixels.

where Nj is the neighborhood of xj . xi in Nj means xi

and xj are neighbors. k is the number of pixels with the same
edge distance as the kernel center, x, in the window. The rea-
son we enforce a connected set is that the edge is the bound-
ary of two areas with contrast intensities, and separated sets
with the same edge distance might actually reside across the
edge. Additionally smoothing over the edges is undesirable
in image denoising. The contours of the EDF kernel will be
one-dimensional curves only along local edges. This curve-
shaped filter is perpendicular to the local orientation and it is
slightly bent according to the local edges to better fit the un-
derlying image structure. Figure 2 shows the 1-D EDF filter
superimposed on the Lena image. The combination of the 1-
D EDF kernel and the local data adaptive kernel compensates
for the drawbacks of either one. That is, the 1-D EDF kernel
does not filter flat regions well, and the local data adaptive
kernel is ineffective with removing speckles in the vicinity of
local edges.
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(a) Original noisy Lena (b) BayesShrink (c) Bilateral (d) Pdf (e) Proposed method

Fig. 3: Visual comparison of various denoising methods on Lena when σn = 60.

3. EXPERIMENTAL RESULTS

Figure 3 illustrates the visual comparison of the denoising
methods discussed in this paper. Observations reveal that our
proposed method performs comparably to traditional denois-
ing methods with light noise, and substantially outperforms
the others with intermediate to heavy noise.
The mean squared error (MSE) is an averaged pixelwise

intensity difference between the ground truth image and the
denoised image:

MSE(Ĩ , Î) =
1

N

∑
(x̃− x̂)2, (14)

where x̃ is the true value of the ith pixel belonging to the
original image, Ĩ , and x̂ is its estimated value from the noisy
data belonging to denoised image, Î , and N is the number
of pixels in Ĩ and Î . The log scale for MSE results can be
represented as PSNR:

PSNR = −10 log10

(
MSE

2552

)
(15)
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Fig. 4: Comparison of denoising methods using MSE at var-
ious noise variance levels. Fourth order pdf iteration times =
σ + 40; Bilateral Filtering σc = 6, σs = 0.2 ; Bayes Shrink
with db4 at level 4; Proposed method σc = 10, σs = 0.5 ,
mask size = 3× 3.

Figure 4 shows that the proposed algorithm has the high-
est PSNR values at various noise levels where σn is from 20
to 60, which means the reconstructed image after denoising is

closest to the ground truth. Note the PSNR values of bilateral
filtering are merely good unless σn > 30. This is due to the
failure of similarity filtering on highly distorted pixel values
in flat areas.

4. DISCUSSION AND CONCLUSION

In this paper, a novel local-feature-adaptive denoising method
is proposed. We show that the method is an iterative, non-
linear, edge-preserving process. In contrast to traditional
nonlinear filtering, which defines weighting coefficients with-
out considering the location information, the hysteresis step
of the edge detection in our method eliminates speckles ef-
fects. Unlike other isotropic kernel regression processes,
our method uses EDM-based smoothing to compensate for
the disturbance of noise in the vicinity of texture-rich areas,
thereby making the entire denoising effect more consistent.
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