
PHASE SINGULARITIES FOR IMAGE REPRESENTATION AND MATCHING

Yu Qiao1, Wei Wang2, Nobuaki Minematsu1, Jianzhuang Liu3, and Xiaoou Tang3

1University of Tokyo, 2Heriot-Watt University, 3Chinese University of Hong Kong
{qiao, mine}@gavo.t.u-tokyo.ac.jp, w.wang@hw.ac.uk, jzliu@ie.cuhk.edu.hk, xitang@microsoft.com

ABSTRACT

Phase features are widely used in image processing and representa-
tion due to their stability to deformation and noise [1, 2]. However,
phase singularities,where the signals vanish, are generally regarded
as harmful and unreliable facts [3]. In this paper, on the contrary, we
will show that phase singularities calculated by Laguerre-Gauss filter
contain important information of input image and can provide a reli-
able representation for image matching. We show that the positions
of phase singularities are invariant to translation and rotation. Usu-
ally, it is possible to recover the input image up to a constant scaling
only from the positions of phase singularities. We study phase sin-
gularities in scale space, which allows us to determine the “intrin-
sic scales” of key phase singularities. We introduce three physical
measures of the local structures of phase singularities and combine
these measures with SIFT descriptor [4] for image matching. We
execute experiments on benchmark database [5] to examine the pro-
posed methods. The results indicate that the proposed method can
achieve comparable performance with certain well-known methods
[4, 5].

Index Terms— Phase Singularity, Image Representation, Scale
Space, Image Matching

1. INTRODUCTION

Image representation is a fundamental problem in image processing
and computer vision. A good representation should be stable to noise
and deformations, while provide rich and distinctive information for
image analysis and recognition. The local phase information, esti-
mated by using complex filters, proves to be a robust representation
with respect to noise additions and transformations [1, 3]. Phase can
smooth shading and brightness variance due to its invariant nature
to amplitude [2]. Moreover, phases include rich information of a
signal. It was shown by [6] that one can recover the original im-
age to a fairly large extent by using the phase information only (the
magnitudes are set as a unity); on the other hand, if the magnitudes
are retained and phases are set as zero, the recovered image is com-
pletely indiscernible. The phase features have found successes in
many image applications, for example, disparity estimation of stereo
[1], object matching [2].

Phase singularities (PSs) refer to the zeros in a complex sig-
nal. In most previous phase-related researches, phase singularities
are generally regarded as awkward and unreliable events [7]. Usual
treatments fail at these positions as phases change abruptly and can-
not be estimated. In [7, 3], phase singularities are detected and dis-
carded. Different from those works, in this paper, we take phase
singularities estimated by using Laguerre-Gauss filter as important
tools for image representation and matching. We show that phase
singularities are invariant to shift and rotations. Usually phase singu-
larities contain complete information for reconstructing the original

image up to a constant scaling. We study the core structure around
phase singularity and introduce three physical measures for them.
By using multi-scale space analysis, we generalize PS points into
phase singularity (PS) curves. This allows us to select key PS points
along PS curves and to determine their characteristic scales. We
combine the physical measures with the famous Scalable Invariant
Feature Transform (SIFT) descriptors [4] for image matching tasks.
The experimental results on image matching task show that our ap-
proach can achieve comparable performance with some well known
methods [4, 5].

We note that phase singularities have been a subject under in-
tensive studies in the field of physics and optics in the last decades.
Phase singularities proved to be an effective tool for describing and
analyzing various physical phenomenons, such as rainbow, tide, wave,
and the optics of crystal [8, 9]. More recently, Wang et. al used
phase singularities to measure the displacement of speckle patterns,
for which was referred as the Optical Vortex Metrology [10].

2. PHASE SINGULARITY

In this section, we will give a brief introduction on phase and phase
singularity (PS), and discuss the core structure of PS.

Mathematically, phase is defined as the argument of a complex
signal. Phase singularity refers to a zero point (0+i0) in the complex
signal. For 2D image I(x, y), we can obtain its complex representa-

tion Î(x, y) by convolving it with a 2D complex filter T (x, y).

Î(x, y) = I(x, y) ∗ T (x, y)

= I(x, y) ∗ Re{T (x, y)} + iI(x, y) ∗ Im{T (x, y)}, (1)

where ‘∗’ represents convolution. Let Î(x, y) = ρ(x, y) exp(iθ(x, y))
represent the polar form, where ρ(x, y) is amplitude and θ(x, y) is
phase.

In this paper, we use the Laguerre-Gauss (LG) filter for T ,

LG(x, y, σ) = −x + yi

σ4
exp(− (x2 + y2)

σ2
), (2)

where σ is a parameter of scale. This filter had been used in wang
et al.’s work on Optical Vortex Metrology [10]. Although this pa-
per focuses on LG-filter, many results might be generalized to other
complex filters, such as, steerable filter, Gabor filter. The discussions
on these are omitted in this paper for limited space.

The real and imaginary parts of LG-filter correspond to the par-
tial derivatives of a Gaussian function G(x, y)=1/(2σ2) exp{−(x2+
y2)/(σ2)}, which have been widely used for edge detection and
scale space analysis [11]. Let E(x, y) = I(x, y) ∗ G(x, y) denote
the Gaussian smoothing image. We have

Ex(x, y) = I(x, y) ∗ Gx(x, y), (3)

Ey(x, y) = I(x, y) ∗ Gy(x, y), (4)
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(a)Original image (b)Phase singularities

Fig. 1. Example of phase singularities. Red circles denote PS points.
Yellow curves and blue curves represent zero-crossing curves of

imaginary and real parts of Î(x, y) respectively.

where subscript x or y denote partial derivatives. Thus,

Î(x, y) = Ex(x, y) + iEy(x, y). (5)

The formulation of Eq. 5 indicates an efficient calculation that the

high order derivatives of Î(x, y) can be obtained by convolving I(x, y)
with the high order derivatives of G(x, y), for example,

Îx(x, y) = I(x, y) ∗ Gxx(x, y) + iI(x, y) ∗ Gxy(x, y). (6)

The Fourier transform of LG filter (Eq. 2) is represented by:

LG(u, v) = iπ2(u + vi) exp(−π2σ2(u2 + v2)). (7)

To reduce the computational cost of convolution in Eq. 1, one can
calculate the Fourier transform of I(x, y) at first and multiply it with

LG(u, v). Then the complex image Î(x, y) can be obtained by ap-
plying inverse Fourier transform on the multiplication.

LG filter has several interesting characteristics. 1) LG filter is a
band-pass filter. The pass band of the filter is determined by scale
parameter σ. This allows us to control the density (number) of phase

singularities in Î(x, y) by changing scale σ. 2) LG filter is DC free,
which makes it robust to homogeneous illumination variations.

Phase singularity points (for short, PS points or PSs) are zeros

in Î(x, y). Formally, we use PS(I, σ) = {(x, y)|Î(x, y) = 0}
to denote the set of PSs. An example of LG-transform and PSs is
shown in Figure1. It is noted that for PS calculation, I(x, y) needs
not have to be pixel density, and one can use features too.

It can be shown that the positions of phase singularities are in-
variant to translation and rotation of input image [12]. Although the
invariance does not strictly hold for image zooming, this problem
can be largely solved by using scale space analysis as we will show
in Section 3.1. The positions of PS points contain nearly complete
information of input image. Usually, it is possible to reconstruct the
input image I(x, y) up to a constant scaling only from the Positions
of PS points. One can refer to [12] for a detailed discussion on the
reconstruct method.

2.1. Local structure of phase singularity

We introduce three physical measures to characterize the local struc-
ture of a PS point. These measures have their roots in physics re-
searches [8, 10] and are invariant to translation and rotation. They
can provide preliminary description of PS points and can be used
for rough PS matching. Phase singularities can be divided into two

Fig. 2. Local structure of a PS point ((88.9, 149.3) in Fig.1).

classes: extremes and saddles, which correspond to the extremal and
saddle points of E(x, y), respectively.

1)Vorticity of PS p is defined as,

Ω(p) = ∇{Re{Î(x, y)}} × ∇{Im{Î(x, y)}} =

»
Exx Exy

Eyx Eyy

–
.

(8)

The amplitudes of Î(x, y) near a PS point exhibit a vortex structure
Fig. 2. Ω measures the strength of the vortex [8, 10]. In fact, it
equals to the Hessian matrix of Gaussian smoothing image E(x, y).

2)The sign of PS p is defined as the sign of the determinant of
vorticity matrix: s(p) = sgn(ExxEyy −E2

xy). Extreme points have
positive signs, while saddle points are negative.

3)Directions of zero-crossing curves θ1 and θ2 at a PS point. For
real zero-crossing line (yellow line of Fig. 2a)

θ1 = arctan(
dx

dy
) = − arctan(

Exy

Exx
), (9)

and for imaginary zero-crossing curves (blue curve of Fig. 2a)

θ2 = arctan(
dx

dy
) = − arctan(

Eyy

Exy
). (10)

θ1 and θ2 can be used to evaluate the orientations of phase singular-
ity. Note θ1 − θ2 is invariant to rotation.

3. IMAGE MATCHING USING PHASE SINGULARITIES

As an application of phase singularities, we will show how to use PS
for image matching task in this section. Since PS points are stable to
certain transformations, here the image matching problem is trans-
formed to find the correspondences between the PS points of two
images. Thus the first problem is to select key PS points for match-
ing. We generalize PS points into PS curves in multi-scale space and
select key points (scales) along PS-curves, which maximizes the nor-
malized Laplacian function (Eq. 11). This selection also allows us
to solve the zooming problem between matching images. For match-
ing selected points, we need to calculate a local descriptor (features)
for each point. A quick idea may be to use the three physical mea-
sures introduced in Section 2. However, these measures only provide
rough descriptions and may lead wrong matchings when images con-
tain complex textures. Therefore, these measures are only used for
finding the candidate matching points. We use SIFT descriptor pro-
posed by [4] as rich features of selected points. In the remainder of
this section, we sketch our method at first, and then describe experi-
mental results.
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Fig. 3. Example of Phase Singularity curves in scale space.

3.1. Scale-space analysis and key PS points selection

The calculation of phase singularities depends on scale parameter σ
of LG-transformation. Every different setting of the scale parameter
leads to a different result: new points of phase singularities may
appear, and existing ones may move or disappear. The pass-band
of the LG filter increases as σ decreases. Thus, usually the larger
σ is, the less number of PS points there are. There is a problem of
how to select a good scale for the calculation of phase singularities.
However, a single scale is seldom sufficient. In fact, the objects
in a single image may come from different sizes (corresponding to
different scales) and it is difficult to assert that one scale is better than
another one. Therefore, other than using a single scale, we consider
phase singularities in a multi-scale space coordinated by (x, y, σ).
In this way, PS points will connect into curves, named PS-curves.
Some examples are shown in Fig.3.

It can be seen from Fig.3, that PS points of different scales along
a PS curve are highly correlated (their x, y coordinates are near). So
it is not necessary to use PS points in all the scales for image match-
ing. We need to select interesting scales (points) along PS curves.
The intrinsic problem here is to determine the characteristic scale
of PS points, from which we can estimate the ”physical length” of
associated image pattern [11, 5] (i.e. in a image, a certain object
takes how many pixels). The problem of automatic scale selection
had been studied extensively by Lindeberg [11], where his basic idea
is that local extremes of normalized derivatives likely correspond to
interesting scales. Mikolajczyk [13] compared different normalized
derivatives on image matching and showed that normalized Lapla-
cian has the best performance. Following this result, we adopts the
normalized Laplacian NL(x, y, σ) for scale selection:

NL(x, y, σ) = σ2|Exx(x, y, σ) + Eyy(x, y, σ)|, (11)

where (x, y, σ) is a point in PS curves.
The main difference between our method and previous scale se-

lection methods [13, 5, 4] is that our selection is constrained to PS
curves. Unlike other selection methods, we do not need to compare
the normalized Laplacian of every point with its neighbors in scale
space for obtaining the extreme points. Moreover, the use of PS
curves allows us to achieve sub-pixel precision.

3.2. Local features and image matching

The three physical measures introduced in Section 2.1 only provide
rough description. For robust PS points matching, we need rich de-
scriptors of local texture. In this work, we adopt the SIFT descriptor
[4]. For each PS-point, we can crop a circled patch of image centered
at this point, whose radius is determined by the associated scale. We
calculate a SIFT descriptor for this image patch. Details are as fol-
lows. At first, the image patch is divided into 4×4 sub regions. Sec-
ondly, we calculate the image gradient magnitudes and orientations
for every pixel in a sub region. Then, the magnitudes are weighted
by a 2D Gaussian function centered at the PS point, and the gradient
angles are quantized into eight orientations. Finally, we accumulate
the weighted magnitudes for each quantized orientation to obtain a
histogram representation in every sub region. The SIFT descriptor
for the whole patch has a total dimensionality of 8 × 4 × 4 = 128.
SIFT descriptors are highly discriminant in the sense that it can be
used to correctly identify two matching points among a large number
of candidates [4]. They are robust to illumination changes, noise ad-
dition and occlusion. We calculate a SIFT descriptor for each PS in
two matching images. Then for each PS, we can find its matching PS
in another image by minimizing the difference of SIFT descriptor.

3.3. Experimental results

We evaluate the proposed matching methods on the benchmark database
1 constructed by [5]. The database contains 8 sets of structured and
textured images. Each set of image includes a reference image and
five compared images under different types of transformations, such
as, veiwpoint changes, scale changes, illumination changes, blur and
JPEG compressions. The homographies (affine transformation ma-
trixes) between the reference image and the compared images in a
particular set are available, which allow us to examine the correct-
ness of the matching points found. For each image, we calculate the
key PS points, and determine their associate regions according to the
characteristic scales.

Following the evaluation method of [5], we examine the repeata-
bility of the key points under various transformations. That is we
compare the the key points found in a reference image and a com-
pared image, and count the number of correct correspondence of PS
found in the two images. (Overlap error threshold is set as 40% [5].)
The results are summarized in Table 1, which shows both the abso-
lute correspondence number and the relative repeatability rate. Due
to space limitation, we only list the comparison results with Lowe’s
key point detection method [4] 2. It is noted that both SIFT detector
and our method are only scale invariant, not full affine invariant as
those in [5]. To be fair for the two methods, we calculate PS points
in the difference of Gaussian space (DoG) and use the same scale pa-
rameters and the refining methods [4]. For all the comparisons, the
proposed method can find more correct correspondent points than
Lowe’s detector. This is an desirable fact which allows us to obtain
more matching points (1.5-2 times). The average repeated rates of
two methods are generally similar, but ours are sometimes slightly
lower than Lowe’s. This is partially because we use the key point re-
fining method which has been developed for Lowe’s detector. These
results are also comparable to several well-known methods, which
had been compared in [5]. We make use of the SIFT descriptors to
match the key points detected. Some examples of image matching
are shown in Fig 4. More results will be available in [12].

1Available at http://www.robots.ox.ac.uk/∼vgg/research/affine/index.html
2We use the implementation at http://vision.ucla.edu/∼vedaldi/code/sift/sift.html.
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Table 1. Experimental results on repeatability. The first two and the second row show the types of variation and the names of data sets
respectively. The third row indicates the level of changes (please refer to [5] for detailed meaning). Here we only show two levels for each
set due to space limitation. CN represents for the correct Correspondence Number, and RR for Repeatability Rate

.
Viewpoint Zoom+Rotation Blur JPEG Illumination

data set Graf Wall Boat Bark Bikes Trees UBC Leuven

level 20 30 20 40 1.1 1.4 1.2 1.8 3 4 2 3 80 90 3 4

CN Ours 1100 711 2478 1587 1785 1361 1320 510 1706 1278 1629 1611 2141 1832 2141 1832

Lowe 693 447 1429 930 940 755 802 331 1050 843 1046 1022 1173 994 1173 994

RR Ours 74% 53% 70% 55% 66% 68% 70% 70% 60% 58% 55% 55% 75% 64 % 73% 71%

Lowe 76% 54% 72% 56% 68% 71% 69% 74% 62% 53% 57% 55% 75% 64% 73% 70%

Fig. 4. Examples of image matching. The numbers in brackets de-
note the numbers for matching pairs found. Green points represents
for all the matching points. For visibility, we only draw 20 matching
pairs (red lines) for each example.

4. CONCLUSIONS

This paper shows that phase singularities (PSs) calculated by Laguerre-
Gauss filter provide an efficient and effective representation for im-
age matching. PSs are invariant to translation and rotation, and gen-
erally PSs contain complete information of an input image that it is
possible to reconstruct the image up to a constant scaling only from
the positions of PSs. Three physical measures are introduced to char-
acterize the local structure of PS. We also study PSs in scale space
and generalize PS points to PS curves. We show how to select key
PS point with characteristic scales along PS curves by maximizing
normalized Laplacian. As an application, we apply PSs on image

matching task. The experimental results on benchmark database [5]
indicate that our method could achieve comparable results with sev-
eral well-known methods [4, 5].

Finally, it should be noted that it is not our main objective in this
paper to develop a high performance image matching method. Our
main focus is to explore the usage of phase singularities for image
representation. The results can be improved if using more precise
methods to locate the extreme PS points and better refining meth-
ods, which will be our future work. We are also going to explore
more theoretical properties of PS (including PS calculated by com-
plex filters other than LG), and develop other possible applications
of PS.
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