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ABSTRACT

Dynamic textures are time-varying visual patterns that ex-

hibit certain spatio-temporal stationarity properties and are

displayed mostly by natural scene elements. In this paper, we

present new statistical models for the characterization of mo-

tion in this type of sequences. First we observe that motion

measurements present values of two types: a discrete com-

ponent at zero expressing the absence of motion and a con-

tinuous distribution for the rest of the motion values. Thus,

we define random variables with mixed-states and propose to

model a sequence of motion maps as a Markov chain, where

the transition densities are mixed-state probability densities.

Based on this approach, we propose a method for dynamic

texture segmentation in real sequences showing the efficiency

of the proposal in dynamic content analysis applications.

Index Terms— Markov processes, motion analysis, im-

age segmentation, stochastic fields.

1. INTRODUCTION

Dynamic textures are time-varying visual patterns that ex-

hibit certain spatio-temporal stationarity properties and are

displayed mostly by natural scene elements. Typical exam-

ples can be found in: smoke, rain, moving foliage, etc. Its

study in the context of computer vision is relatively recent

and the main efforts in the modeling of this type of image se-

quences was mainly devoted to define linear dynamical sys-

tems that describe the evolution of image intensity over time

[1, 2]. However, normal and optical flow have been pointed

out as a very efficient and natural way of characterizing the

local spatio-temporal dynamics of a dynamic texture [3], and

thus, its modeling is an issue to explore, and exploit.

When we analyze motion measurements extracted from

dynamic texture sequences from a statistical point of view, we

observe that motion variables display values of two types: a

discrete component at the null motion value, and a continuous

distribution for the remaining values. Then, it can be helpful

to explicitly define random variables that take either a dis-

crete or symbolic state expressing the absence of motion, or

continuous real values accounting for actual measurements.

Compact representations of these types of information

have been recently introduced in the form of mixed-state

Markov random fields [4, 5] for purely spatial schemes.

In this paper, we introduce new mixed-state models for

the temporal modeling of dynamic textures, also called mo-

tion textures. A mixed state Markov chain framework is de-

fined herein, assuming causal dependence as a first approach

to studying their evolution over time. An application to mo-

tion texture image segmentation is given together with results

on real image sequences.

2. MOTION TEXTURES

Let Ii(t) be a scalar function that represents the image in-

tensity at image location i for time t. Here, we consider

the normal flow as local motion measurements, defined as

V
n
i (t) = −

∂Ii(t)

∂t

‖∇Ii(t)‖
∇Ii(t)

‖∇Ii(t)‖
, where

∂Ii(t)
∂t

is the temporal

derivative of the image intensity. We follow the approach of

[5], introducing a weighted vectorial average of normal flow

in order to keep direction information:

Ṽ
n
i (t) =

∑
j∈W

V
n
j (t) ‖ ∇Ij(t) ‖2

max(
∑

j∈W

‖∇Ij(t) ‖2, η2)
, (1)

where η2 is a constant related to noise, and W is a small win-

dow centered in location i. This average results in a local

estimation of normal flow. The projection of this quantity

over the intensity gradient direction gives rise to the follow-

ing scalar motion observation:

vi(t) = Ṽ
n
i (t) · ∇Ii(t)

‖ ∇Ii(t) ‖ , (2)

with vi ∈ (−∞, +∞). Once the motion measure is obtained,

a sequence of intensity images is mapped to a sequence of

motion maps or fields called motion textures. The resulting

motion measurements are of a mixed nature. The underly-

ing discrete property of no-motion for a point in the image, is

represented as a null observation vi = 0, and acts as the sym-

bolic component of the model. Thus, the null motion value in

this case, has a peculiar place in the sample space, and conse-

quently, has to be modeled accordingly.
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3. MIXED-STATE PROBABILITY FRAMEWORK

We first outline the theoretical framework attached to mixed-

state random variables. Define E = {r} ∪ R
∗ where R

∗ =
R\{r}, with r a possible “discrete” value. A random variable

X defined on this space, called mixed-state variable, is con-

structed as follows: with probability ρ ∈ (0, 1), set X = r,

and with probability = 1−ρ, X is continuously distributed in

R
∗. Consequently, the distribution function of X can be ex-

pressed as a monotone increasing function with a “step jump”

at X = r.

In order to compute the probability density function of

the mixed-state variable X , E is equipped with a “mixed”

reference measure, m(dx) = νr(dx) + λ(dx), where νr is

the discrete measure at r and λ the Lebesgue measure on R
∗.

Hereafter, we will consider that r = 0 without loss of gen-

erality, expresing the property of no-motion in the context of

motion texture modeling. Let us define the indicator func-

tion of the null value 10(x) and its complementary function

1
∗
0(x) = 1 − 10(x). Then, the above random variable X has

the following density function, w.r.t. m(dx),

p(x) = ρ10(x) + (1− ρ)1∗
0(x)g(x), (3)

where g(x) is a continuous pdf defined on R. These defini-

tions can be extended easily to multi-dimensional mixed-state

variables.

4. TEMPORAL MODELING OF MOTION

TEXTURES

We propose modeling the motion textures as a Markov chain

of random fields, X = {Xt}t:0...T , defined over a state space

ES , where Xt = {xi(t)}i∈S represents a motion texture or

field computed at time t, and S = {1, 2, ....N} is a spa-

tial lattice of sites or image locations. This random field is

assumed to have a probability distribution function with an

everywhere positive density p, w.r.t the mixed-state product

measure μ = m⊗S. Therefore, the transition kernel for the

mixed-state Markov chain (MS-MC) is defined as,

P (xt−1,xt) = p(Xt = xt | Xt−1 = xt−1)μ(dxt). (4)

A similar model but in another context is proposed in [6].

For a first order Markov chain, we can write:

p(X) = p(X0,X1, ....,XT ) = p(X0)

T∏
t=1

p(Xt | Xt−1). (5)

For the purely causal temporal model that we study here,

a first assumption to consider is spatial conditional indepen-

dence within a motion texture for time t. This simplifies con-

siderably the formulation of the problem w.r.t. spatial models

[5], for which equation (5) can, rarely, be completely known

[7]. Consequently, given the previous instant, and assuming a

local dependency on a neighborhood χi,t−1 of ‘past’ random

variables,

p(Xt | Xt−1) =
∏
i∈S

p(xi,t | Xχi,t−1), (6)

where Xχi,t−1 is the subset of Xt−1 restricted to a neighbor-

hood of locations χi,t−1 and xi,t = xi(t). In our case, we

will assume that the temporal neighborhood is a 9-point set

which includes the previous (at t − 1) center, diagonal, anti-

diagonal, horizontal and vertical motion variables for a point

at time t.

4.1. Gaussian mixed-state Markov Chains (MS-MC)

A mixed-state Markov Chain is defined as a Markov chain

where the transition densities are mixed-state probability den-

sities. Particularly, for a Gaussian MS-MC the continuous

part of the corresponding conditional mixed-state density (3)

follows a Gaussian law with mean mi,t ≡ m(Xχi,t−1 ) and

variance σ2
i,t ≡ σ2(Xχi,t−1 ). Then, the local conditional

mixed-state densities are defined as

p(xi,t | Xχi,t−1 ) = ρi,t10(xi,t) + ρ∗i,t1
∗
0(xi,t)

e
−

(xi,t−mi,t)
2

2σ2
i,t

√
2πσi,t

,

(7)

where ρi,t = P (xi,t = 0 | Xχi,t−1 ) is now a function of

Xχi,t−1 and ρ∗i,t = 1− ρi,t.

An interesting case for motion texture modeling is given,

when the mean mi,t is a sort of weighted average of its neigh-

bors,

mi,t = c +
∑

j∈χi,t−1

hjxj,t−1, (8)

and σ2
i,t = σ2 is a constant for every point. This enforces

local correlation, captures important properties as the orienta-

tion of the texture, and at the same time, keeps the model sim-

ple and with a limited number of parameters. Following [8],

for such a mixed-state conditional density, we can write the

corresponding joint probability density (5) as a Gibbs distri-

bution, i.e. p(X) = exp Q(X)/Z , with Z the partition func-

tion or normalizing factor, and for which Q(X) = Qd(X) +
Qc(X) and,

Qd(X) =
∑
i,t

α1
∗(xi,t)+

∑
t

∑
〈i,j〉:j∈χi,t−1

βj1
∗(xi,t)1

∗(xj,t−1),

(9)

Qc(X) = − 1

2σ2

∑
i,t

[cxi,t − x2
i,t +

∑
j∈χi,t−1

hjxj,txj,t−1].

(10)

Moreover, the probability of the null value is given by

ρi,t =

[
1 +

√
2πσeα+

∑
βj1

∗(xj,t−1)+
m2

i,t

2σ2

]−1

.
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Finally, the parameters that define the Gaussian MS-MC

model are ϕ = {σ2, α, {βj}, c, {hj}}. Well known estima-

tion techniques can be applied in order to estimate the set of

parameters that defines the conditional distributions of equa-

tion (7) and the transitions densities, as well. A Maximum

Likelihood formulation w.r.t. those parameters is straightfor-

ward to obtain.

5. APPLICATION TO TEXTURE SEGMENTATION

The problem of segmentation is equivalent to assign a label

to each point in the image grid for every time t, indicating

that it belongs to a certain motion texture class. Following

a Bayesian approach, we search for a label realization l =
{li,t}, where li,t ∈ {1, 2, ..., c} is the class label value of xi,t,

that maximizes p(l | X) ∝ p(X | l)p(l), where X represents

the motion sequence. This corresponds to a MAP (maximum-

a-posteriori) estimation of the label field l. If we suppose

that the c different motion textures come from independent

dynamic phenomena, given the label field, we can write:

p(X | l) =

c∏
k=1

p(Xk; ϕk) =

c∏
k=1

∏
i,t:li,t=k

p(xi,t | Xχi,t−1 ; ϕk)

(11)

Xk is the vector of motion random variables that belong

to texture k, and is a subset of X. For the a priori information

on the segmentation label field, p(l), we introduce another

Markov field on the same temporal neighborhood as for the

MS-MC, that behaves as a regularization term for the labeling

process, so p(l) ∝ exp[QS(l)] with:

QS(l) =
∑
i,t

∑
j∈χi,t−1

γI0(li,t − lj,t−1), (12)

where I0(z) is the null argument indicator function. p(l) pe-

nalizes the differences of labeling between adjacent neigh-

bors, smoothing the segmentation output. The complete for-

mulation can be stated as maximizing the energy:

E(l) =

c∑
k=1

∑
i,t:li,t=k

log p(xi,t | Xχi,t−1 ; ϕk)+ QS(l), (13)

where from (7), (9) and (10),

log p(xi,t | ·) = α1
∗(xi,t)− c

2σ2
xi,t +

x2
i,t

2σ2
+

+
∑

j∈χi,t−1

[βj1
∗(xi,t)1

∗(xj,t−1) +
hj

2σ2
xi,txj,t−1] + log ρi,t.

(14)

The maximization of equation (13) w.r.t l is performed

using fast optimization algorithms based on the technique of

Graph cuts [9] for assigning labels to points in the image grid.

5.1. Experimental results

We have applied our motion-texture segmentation method to

natural scenes consisting of at most two moving textures (c =
2). The sequences are processed using non-overlapping tem-

poral windows with a length of L = 5 frames. For each

window, the texture temporal models are estimated and the

segmentation algorithm is applied.

We have first to estimate the parameters of the different

motion textures involved in the processed image sequence.

After computing the normal flow field from consecutive im-

ages within the temporal window, we divide the images of

the sequence in blocks of 50x50 pixels and for each block,

assuming that neither of the motion textures are moving in

that interval, a set of motion-texture model parameters is esti-

mated. Then, we apply a clustering technique to obtain a first

splitting of blocks in two classes (composite blocks can be

easily discarded at this stage). After this step, we recompute

the parameters for each cluster and we obtain an estimate for

both motion-texture models.

In Fig. 1 a) and b), we analyze a situation where two real

motion textures (steam and ocean) are combined artificially.

In Fig. 1 c) and d), we present another combined sequence

where we have two separated regions of moving leaves over

a motion texture of grass. Finally, in Fig. 1 e) and f), we have

another complex real sequence that corresponds to a foun-

tain over a static background. In this last case, we observe

that the segmented regions vary across time as the fountain

changes its shape. It is worthy to note that, in fact, the static

background is a motion texture for our model, as it can be

represented with the symbolic value, “absence of motion”,

corresponding to null motion measurements.

6. CONCLUSIONS

We have presented new mixed-state models for motion tex-

ture temporal modeling. It has been shown that the discrete-

continuous nature of the proposed motion measurements,

settles the necessity for an appropriate modeling framework,

which considers, not only the distribution of motion values,

but also the distribution of the symbolic information. As we

illustrate in the experiments, these models are very efficient

in challenging problems as segmentation. With only a few

parameters, they have shown to be a very powerful non-linear

representation for describing complex dynamic content.
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