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Abstract—We propose a computational model for estimating
scalable visual sensitivity profile (SVSP) of video, which is a
hierarchy of saliency maps that simulates the bottom-up and top-
down attention of the human visual system (HVS). The bottom-
up process considers low level stimulus-driven visual features
such as intensity, color, orientation and motion. The top-down
process simulates the high level task-driven cognitive features
such as finding human faces and captions in the video. The
nonlinear addition model has been used for integrating low level
visual features. A full center-surrounded receptive field profile is
introduced to provide spatial scalability of the model. Due to the
hierarchical nature, the proposed SVSP can be directly used to
augment the visual quality of codings with spatial scalability.
To justify the effectiveness of the proposed SVSP, extended
experiments of its application in visual quality assessment are
conducted.

Index Terms—Human visual system, perceptual quality assess-
ment, scalable video coding,

I. INTRODUCTION
Visual attention is one of the most important mechanisms

of the human visual system (HVS). Most of the success-
ful computational visual attention models are based upon
Treisman’s pioneering work on visual attention [1], which
divides the process into the pre-attentive and attentive stages.
The pre-attentive stage, also referred as bottom-up attention
stage, extracts low-level visual features such as intensity, color,
orientation and movement, and integrates them into a saliency
map. The attentive stage, or the top-down stage, involves much
more complex psychological process, and directs attention into
certain objects within the scene. The pre-attentive and attentive
stages are also known as stimulus-driven and knowledge-
driven attentions, respectively. Koch and Ullman’s model [12]
firstly proposed the biologically-plausible computational steps
in bottom-up attention simulating such central representation
and winner-take-all networks. Their work largely motivated
Itti’s model [2] [16] and the most recent Oliver et al.’s model
[13]. Compared with bottom-up attention, the investigation on
top-down attention lays its emphasis on the top-down modu-
lation processing on bottom-up features of visual attention [2]
[14]. Commonly these models lack explicit expression. One
exception is Lu et al.’s PQSM [15], which takes human face
detection as an evidence of top-down attention.
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With a mathematical visual attention model, it is straight-
forward to generate a topographic saliency map of visual
attention, which indicates the sensitivity level of every location
in the input image. However, scalable video coding (SVC)
is recently being developed to enable decoding from partial
streams with respect to the specific rate and resolution required
by a certain application. Therefore, it requires the computa-
tional visual attention model to offer more flexibilities, because
it may need saliency maps under various spatial/temporal
resolutions to facilitate the coding process instead of one with
fixed resolution. In this paper, we propose a computational
model for scalable visual sensitivity profile (SVSP), i.e., a
hierarchy of saliency maps that simulate both the bottom-
up and top-down attention of HVS. Due to the hierarchical
structure, the proposed SVSP can be directly used to augment
the visual quality of SVC applications. In addition, it can be
applied to assess the visual quality of image and video, with
improved accuracy benefiting from the systematic simulations
of both pre-attentive and attentive features.
For the rest part of the paper, the framework of the proposed

SVSP is introduced in Section II. The bottom-up and top-
down attention models are detailed in Section III and IV,
respectively. The results are integrated into SVSP in Section
V, followed by the verification of SVSP in image quality
assessment in Section VI. And finally Section VII concludes
the paper.

II. THE COMPUTATIONAL FRAMEWORK FOR SVSP
The diagram of the computation model of SVSP is shown

in Fig.1, and the outputs of each step, using the example of
present debate, are also illustrated. We take Itti’s bottom-up at-
tention model [2] as a reference and make some modifications
towards more accurate prediction for specific applications.
1) We extend the receptive field profile computation into a
full center-surrounded structure, so as to provide hierarchical
saliency maps to be used in SVC. 2) Nothdurft’s nonlinear
addition model [3] is used to integrate low-level stimulus
features instead of Itti’s direct summation [2] to account for
possible overlap between features map. For the top-down
attention part, it is widely known that human face and captions
in the picture often indicate useful recognition clues and
attract knowledge-driven human attention. As a consequence,
we apply face and caption as top-down attention directors. It
is noted that other high level attentive features can also be
easily added into the proposed framework. These top-down
feature maps also take a hierarchical shape to be seamlessly
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combined with the afore-computed bottom-up features. With
the hierarchical bottom-up and top-down saliency maps, we
can integrate them into a final SVSP.

III. BOTTOM-UP ATTENTION MODEL
A. Low-level Feature Detection
Itti’s model operates in the RGB color space for ex-

pression and computation simplicity [2]. However, in digital
image/video coding systems, the YCbCr color space is often
more preferable, due to three reasons: 1) Y, Cb and Cr
are uncorrelated; 2) Cb, Cr can be represented using lower
bandwidth; and 3) Y can be extracted and used as luminance
directly. So in this work, we adapt Itti’s model into the
YCbCr space. Let f1 · · · fn be n consecutive frames in a video
sequence. In YCbCr system, for a frame fi, Y is taken as the
intensity channel, i.e.

cii = Yi (1)

This luminance component is more accurate than that of Itti’s
model, where an approximation cii = (Ri + Gi + Bi)/3 was
used. For color componnet, Itti created four broadly tuned
color channels of red, green, blue and yellow in RGB space
[2], denoted as cri, cgi, cbi and cyi, respectively. Considering
the conversion matrix between RGB and YCbCr, the color
channels in YCbCr space would be

cri = −0.813(Cbi − 128) + 2.003(Cri − 128) (2)
cgi = −1.401(Cbi − 128)− 1.661(Cri − 128) (3)

cbi = 2.213(Cbi − 128)− 0.392(Cri − 128) (4)
cyi = 3.642(Cbi − 128) + 0.783(Cri − 128)

+0.392(Cbi − 128) + 2.409(Cri − 128) (5)

The orientation channel coiis obtained by filtering the intensity
channel cii in four directions with Gabor filters (GF (θ))

coi(θ) = cii ∗GF (θ), θ ∈ {0o, 45o, 90o, 135o} (6)
Motion is another important factor that modulates visual
attention. For video sequences, we use Ogale’s optical flow
algorithm [4] to estimate absolute motion of image objects
between consecutive frames. For three consecutive frames
fi−1, fi, fi+1, the horizontal and vertical motion channels of
fi are determined as the averaged directional optical flows
between (fi−1, fi) and (fi, fi+1)

cmΘ
i = [ofΘ(fi, fi+1) + ofΘ(fi−1, FI)]/2, Θ ∈ (h, v) (7)

The final motion channel is a combination of the horizontal
and vertical motion

cmi = [(cmh
i )2 + (cmv

i )2]1/2 (8)
By iteratively dyadic down-sampling for L times of these
channels, we can create pyramids for each of these channels
of the frame fi

{cii(l), cri(l), cgi(l), cbi(l), cyi(l), coi(l), cmi(l)|l ∈ (0, L)}
(9)

where l = 0 indicates no down-sampling, i.e. the original
image size. We use MPEG-4 down-sampling filter [8] to
generate the pyramids instead of Itti’s Gaussian low-pass filter
[2] to be compliable with existing video coding standards.
Hereinafter, we omit the subscription “i” in the expressions
for brevity.

TABLE I
QUALITATIVE PERFORMANCE ANALYSIS OF IMAGE QUALITY

ASSESSMENT MODELS VC: VARIANCE WEIGHED CORRELATION AFTER
NONLINEAR REGRESSION SC: SPEARMAN RANK ORDER CORRELATION

VC SC
model JPEG2000 JPEG All JPEG2000 JPEG All
PSNR 0.8962 0.8596 0.8728 0.8898 0.8409 0.8646
SSIM 0.9367 0.9283 0.9295 0.9317 0.9028 0.9174

PSNRV SP 0.9168 0.8688 0.8826 0.9161 0.8566 0.8776
SSIMV SP 0.9478 0.9365 0.9401 0.9420 0.9136 0.9267

B. Center-surround Receptive Field Simulation

A full center-surround structure is implemented to simulate
the receptive fields in the HVS. The center level c and
surround level s are defined as: c ∈ [0, 8], s = c + δ,
δ ∈ [−3,−2,−1, 1, 2, 3] and s is thrown away if s /∈ [0, 8].
The full center-surround receptive field profiles are computed
for each pair of the five feature components: intensity, red-
green channel, blue-yellow channel, orientation, and motion,
based on the computed pyramids.

I(c, s) = |ci(c) ◦ ci(s)| (10)
RG(c, s) = |(rc(c) − gc(c)) ◦ (gc(s)− rc(s))| (11)
BY (c, s) = |(bc(c)− yc(c)) ◦ (yc(s)− bc(s))| (12)
O(c, s, θ) = |co(c, θ) ◦ co(s, θ)| (13)
M(c, s) = |cm(c) ◦ cm(s)| (14)

where the operator | ◦ | denotes to convert the size of the sur-
round level s to the center level c through up-sampling or sub-
sampling, and then calculate the difference. For compliance
with coding standards, AVC 6-tap up-sampling filter [9] and
the MPEG-4 down-sampling filter [8] are used. Accordingly,
the sizes of these profiles are the same as the corresponding
center levels in the pyramids.

C. Non-linear Feature Combination

To combine the channel information to generate one single
saliency profile on certain pyramid level, the contents-based
global non-linear amplification is firstly used to normalize the
profiles [2]. The processed profiles are

Ī(c) =
∑

s

Nor(I(c, s)) (15)

C̄(c) =

∑
s Nor(RG(c, s)) +

∑
s Nor(BY (c, s))

2
(16)

Ō(c) =
∑

s

Nor (O(c, s)) (17)

M̄(c) =
∑

s

Nor (M(c, s)) (18)

Note that the RG and BY channels are combined to generate
one color channel C̄. In order to integrate these profiles,
Nothdurft’s nonlinear addition model [3] is employed to count
for the possible overlaps between stimuli features. The bottom-
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Fig. 1. The framework of computational model for the SVSP.

up attention profile (BAP) is computed as

BAP (c) = Ī(c) + C̄(c) + Ō(c) + M̄(c)

−λIC ·MIN
(
Ī(c), C̄(c)

)
− λIO ·MIN

(
Ī(c), Ō(c)

)
−λIM ·MIN

(
Ī(c), M̄(c)

)
− λCO ·MIN

(
C̄(c), Ō(c)

)
−λCM ·MIN

(
C̄(c), M̄(c)

)
− λOM ·MIN

(
Ō(c), M̄(c)

)
(19)

The control coefficients λ are set according to psycho-visual
experiment findings [3]: λIC = 0, λIO = 0.2, λIM =
0.25, λCO = 0.8, λCM = 0.2, λOM = 0.5.

IV. TOP-DOWN ATTENTION SIMULATION
We implement two top-down cognitive-related features of

visual attention in the current work, namely skin tone color
and caption detections. As has been pointed out by many
researchers [15], the skin color area indicates the appearance of
people and often attracts human attention. More often than not,
caption in video sequence contains much useful information
and has already been used as a key element in content-based
video indexing and retrieval.
A. Skin Color Detection
Since YCbCr color space has inherent natures in separation

between luminance and chrominance and compaction of skin-
color clusters, some successful skin detection methods based
on YCbCr space have been developed. Among them, we adopt
Hsu et.al’s elliptical skin model on nonlinear transformed
chrominance components for detecting skin areas in color
images [5]. For a frame fi, the detected skin area in a color
map is defined as

SMi(x, y) =

{
1 : (x, y) ∈ skinarea
0 : otherwise

(20)

where (x, y) is the pixel index. When false alarm occurs
(in our algorithm, we ensure a little over-detection through
adjusting the thresholds), a morphological “open” operation is
applied, denoted as SM ′ = SM � se, where se is a 5x5 disk
structure element. After excluding false skin regions through
morphological processing, we compute a convex hull to cover
the survived skin color regions, so as to combat the possible
“holes” resulted from the detection.

B. Caption Detection
Caption in video sequence contains lots of high-level seman-

tic information, which certainly attracts human attention. To
fully utilize the temporal information, we incorporate Luo at.
al’s TFV (Temporal Feature Vector) based caption detection
method in our system [6]. The detected caption map is denoted
as

CMi(x, y) =

{
1 : (x, y) ∈ captionarea
0 : otherwise

(21)

V. SVSP INTEGRATION

To incorporate with the pyramidal bottom-up attention pro-
file BAP (l), l ∈ [0, L], the top-down attention features skin
map and caption map are firstly smoothed with a 5x5 Gaussian
window and then iteratively filtered with MPEG-4 down-
sampling filters [8]. Let the generated pyramids corresponding
to skin map and caption map be SP (l) and CP (l) respectively,
with l ∈ [0, L]. The visual sensitivity profile is integrated as

V SP (l) = BAP (l) · αSP (l)

· βCP (l)

l ∈ [0, L] (22)

where α,β ≥ 1 are weighting coefficients. Note that when
α = β = 1, the top-down features take no effect in modulating
bottom-up attention map. Considering the fact that human
face by its nature attracts more low-level human attention,
we emphasize skin map more and α = 1.5, β = 1.2 are set
in this paper. Fig.2 presents the generated level 0 VSP of the
50th frame in president debate.

VI. SVSP VERIFICATION WITH QUALITY ASSESSMENT

The proposed SVSP can be used to augment visual quality
in either scalable (0 < l < L) or non-scalable (l = 0)
scenarios. Limited by the space, we only justify its validity in
quality assessment in non scalable mode. For more applica-
tions in scalable modes, one may refer to [17]. We design two
simple image quality assessment algorithms by modifying the
simple PSNR (Peak Signal to Noise Ratio) and well known
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(a) (b)

(c) (d)
Fig. 2. (a) Frame 50 of video clip ”president debate”. (b) Frame 51 of video
clip ”president debate”. (c) BAP level 0. (d) VSP level 0.

mean SSIM (Structural SIMilarity) [7], namely PSNRV SP

and SSIMV SP , as

PSNRV SP = 10 · log

(
M∑

x=1

N∑
y=1

2552 · [V SP (0)(x, y)]−κ

[f0(x, y)− fd(x, y)]2

)

(23)

SSIMV SP =
1

M ·N

M∑
x=1

N∑
y=1

SSIM(x, y) · [V SP (0)(x, y)]κ

(24)
where f0(x, y) and fd(x, y) are original and distorted images,
V SP (0)(x, y) is computed from f0(x, y), SSIM(x, y) is the
structural similarity map computed using Wang’s algorithm
[7], M and N are the image dimensions, and κ = 1 is
simply used in this paper. The proposed methods are tested
on LIVE image database release 2 [10] with JPEG and
JPEG2000 coded images of various bit rates and collected
DMOS (Different Mean Opinion Score) from subjective tests.
We evaluate the quantitative performance of the two proposed
metrics using methods introduced by Video Quality Experts
Group (VQEG) [11]. 1) The correlation between objective and
subjective scores after variance-weighted regression, which
evaluates the prediction accuracy. 2) The spearman rank order
correlation between objective and subjective scores, which
evaluates the prediction monotonicity. As can be found in
Tab.I, as well as the scatter plots in Fig. 3 the proposed VSP
can effectively enhance the performances of image quality
metrics by differentiating important and trivial image contents
and assign dissimilar weights to different regions.

VII. CONCLUSION

We propose the scalable visual sensitivity profile (SVSP):
a hierarchy of saliency maps that simulate the bottom-up
and top-down attention of the HVS. The bottom-up mod-
ule is based on some earlier work with modifications and
adaptations towards a hierarchical representation and more
accurate simulation. The top-down module utilizes human
skin-color detection and caption extraction as cognition clues.
The SVSP’s application in image quality assessment has been
analyzed to demonstrate the validity of SVSP.

(a) (b)

(c) (d)
Fig. 3. Scatter plots of DMOS vs. predictions of image quality metrics
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