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ABSTRACT

In this paper, regional attention to structural degradations in
images is analyzed to improve perceptual quality prediction
performance of objective image quality metrics. Subjective
experimentswere conducted to identify regions-of-interest for
a set of natural images. A region-selective metric design is
then applied to four objective image quality metrics which
were trained and validated with respect to quality prediction
accuracy and generalization to unknown images. For this pur-
pose, data is used from subjective quality experiments con-
ducted at two independent laboratories. It is shown that the
region-selective design is highly bene cial for the considered
objective image quality metrics, in particular, prediction ac-
curacy can be signi cantly increased.

Index Terms— Objective image quality metrics, region-
of-interest, subjective experiments, feature extraction.

1. INTRODUCTION

In natural images, objects that attract peoples attention are
commonly referred to as region-of-interest (ROI). This at-
traction is due to many in uencing factors of which some of
the strongest are contrast, shape, size, and location of the ob-
ject. In particular, humans and their faces, have been shown to
strongly draw the viewers attention [1]. This phenomenonhas
extensively been utilized for ROI image codingwhere the ROI
receives a higher coding bit rate than the background (BG)
which is particularly useful for image communication when
bandwidth is scarce. In order to evaluate the gain through ROI
coding, one needs appropriate metrics that are able to inde-
pendently assess the quality in ROI and BG. Objective image
quality metrics, however, are mostly designed to perform the
quality prediction on the whole image. This does not agree
well with the properties of the human visual system (HVS)
which is highly space variant in sampling and processing of
visual signals. In fact, the spatial acuity is highest around the
central xation point, the fovea, and decreases strongly with
increasing eccentricity [2]. This indicates that image artifacts
in the ROI may be perceived more severe than artifacts out-
side the ROI. Furthermore, it has been shown that the HVS is
well adapted to extraction of structural information [3].

Considering the above, the aim of this paper is to deter-
mine the impact of structural degradations on perceptual im-
age quality in ROI and BG to enable region-selective image
quality metric design. For this purpose, a subjective experi-
ment has been performed to identify ROI for a set of natural
images. Four objective image quality metrics are used for
the region-selective metric design. The metrics are trained
and the quality prediction performance is validated with data
from two independent subjective quality experiments. We ob-
served that the region-selective quality metric design substan-
tially increases quality prediction performance of the metrics.

The paper is organized as follows. Section 2 discusses
subjective experiments for image quality and ROI identi ca-
tion. Section 3 introduces region-selective objective image
quality. In Section 4, quality metric design and prediction
performance are discussed. Section 5 concludes the paper.

2. SUBJECTIVE EXPERIMENTS

2.1. Subjective image quality experiments

The design of objective quality metrics presented in this paper
is supported using mean opinion scores (MOS) obtained in
subjective quality experiments from two independent labora-
tories. The rst experiment was conducted at Blekinge Insti-
tute of Technology (BIT) in Ronneby, Sweden, and the other
at the Western Australian Telecommunications Research In-
stitute (WATRI) in Perth, Australia [4]. Each experiment in-
volved 30 non-expert viewers. The experiment procedures
were designed according to ITU-R Rec. BT.500-11 [5]. A set
IR of 7 reference monochrome images of dimensions 512 ×
512 pixels was chosen to account for different textures and
complexities. The images were encoded into Joint Photo-
graphic Experts Group (JPEG) format. A simulation model
of a wireless system was used to generate two sets IB and IW

of 40 distorted images each, for BIT and WATRI experiments,
respectively. In particular, blocking, blur, ringing, and inten-
sity masking artifacts were observed in different degrees of
severity. The viewers were shown the distorted images along
with their reference images. The experiments at BIT and WA-
TRI resulted in two respective sets of MOS, MB and MW .
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Fig. 1. Mean ROI for the images in IR (black frame: before outlier elimination; brightened area: after outlier elimination).

Table 1. Statistical analysis of ROI experiment.

μxC σxC μyC σyC r0

Barbara 350 99.92 344 89.51 16.7

Elaine 260 42.24 263 46.96 10

Goldhill 288 65.36 204 87.79 10

Lena 278 60.2 227 31.99 10

Mandrill 256 8.27 339 86.14 3.3

Pepper 235 84.15 262 58.85 10

Tiffany 316 33.1 231 52.95 3.3

2.2. Subjective experiment for ROI identi cation

A subjective ROI experiment was conducted at BIT where
viewers had to select an image region that draws their atten-
tion. The outcomes enabled us to identify a rectangular mean
ROI for each of the reference images in IR and ultimately to
perform the region-selective metric design. The experiment
involved 30 non-expert viewers and comprised of three trials;
training, stabilization, and test. A simple training image was
used to explain the ROI selection process, followed by two
stabilization images for the viewer to adapt to the process.
The actual test set comprised of the reference images in IR.

For each of the images it was observed that a few selec-
tions were far away from the majority of the votes. These se-
lections, also referred to as outliers, were eliminated by adopt-
ing the criterium de ned in [6] as follows

|xC − μxC | > 2 · σxC or |yC − μyC | > 2 · σyC (1)

where xC and yC are ROI center point coordinates in horizon-
tal and vertical direction, respectively, with the origin in the
bottom left image corner. Furthermore, μ and σ denote the
corresponding mean and standard deviation over all 30 ROI
selections, respectively. Based on the number of eliminated
outliers we de ne an outlier ratio for each of the images as

r0 =
N0

N
· 100 [%] (2)

where N0 is the number of eliminated ROI selections and N
the number of all ROI selections. A statistical analysis of
the experiment is summarized in Table 1. The mean ROI are
shown in Fig. 1 where the black frame and brightened region
emphasize the mean ROI before and after outlier elimination,

respectively. It should be noted, that in order for the objective
quality metrics (see Section 3.1) to produce meaningful re-
sults, ROI were adjusted to fall into the closest 8×8 block bor-
ders produced by the discrete cosine transform of the JPEG
coder. However, considering the image size, the maximum
error due to this necessary adjustment is only 0.78%.

3. REGION-SELECTIVE OBJECTIVE QUALITY

3.1. Objective image quality metrics

For the region-selective metric design we considered the fol-
lowing four objective image quality metrics which were orig-
inally designed for quality assessment of a whole distorted
image ID as compared to a whole reference image IR.

Metric 1: The Normalized Hybrid Image Quality Metric
(NHIQM) has been proposed in [7]. It is based on extraction
of ve structural features fn ∈ [0, 1], in particular, blocking,
blur, edge-based image activity, gradient-based image activ-
ity, and intensity masking. The individual feature measures
are normalized and accumulated resulting in a single value

NHIQM =
5∑

n=1

wn · fn (3)

where the weights wn regulate the impact of a feature on the
overall metric. More precisely, weights wn were derived as
Pearson linear correlations of the corresponding features fn

with MOS MB , as a means for the perceptual relevance of
a feature [7]. Further de ned is an absolute difference as a
measure of structural degradations between two images

ΔNHIQM = |NHIQMR − NHIQMD|. (4)

Metric 2: A reduced-reference image quality assessment
(RRIQA) technique is described in [8] which is based on a
natural image statistic model in the wavelet domain. The dis-
tortion between two images is calculated as

RRIQA = log2

(
1 +

1
D0

K∑
k=1

|d̂k(pk‖qk)|
)

(5)

where the constant D0 is a scaler of the distortion measure,
K is the number of subbands, and d̂k(pk‖qk) an estimation of
the Kullback-Leibler distance between the probability density
functions pk and qk of the kth subband in the two images.
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Fig. 2. Overview of the image quality assessment system providing region-selective metric Φ and predicted MOS MOSΦ.

Metric 3: In [3], a metric is reported that computes a
structural similarity (SSIM) index between two images as

SSIM =
(2μRμD + C1)(2σRD + C2)

(μ2
R + μ2

D + C1)(σ2
R + σ2

D + C2)
(6)

where μR, μD and σR, σD denote mean intensity and contrast
of images IR(x, y) and ID(x, y), respectively. C1 and C2 are
constants used to avoid instabilities for very small μ or σ.

Metric 4: Finally, the well known peak signal-to-noise
ratio (PSNR) measures the delity difference of two image
signals IR(x, y) and ID(x, y) on a pixel-by-pixel basis as

PSNR = 10 log
η2

MSE
(7)

where η is the maximum pixel value, here 255. The mean
square error is given as

MSE =
1

XY

X∑
x=1

Y∑
y=1

[IR(x, y) − ID(x, y)]2 (8)

where X and Y denote horizontal and vertical image dimen-
sions, respectively.

3.2. Region-selective objective image quality metrics

In the following, the objective image quality metrics from
Section 3.1 have been used to independently assess the im-
age quality of ROI and BG to enable region-selective quality
metric design. An overview of the region-selective quality
prediction system is given in Fig. 2. The ROI is identi ed
in the reference image IR based on the corresponding mean
ROI from the subjective experiment. Hence, prediction errors
through automated ROI detection algorithms [1] are excluded
and do not affect the region-selective quality metric design.
ROI and BG extraction is then performed on the reference
images IR ∈ IR and distorted images ID ∈ {IB, IW }. An
ROI quality metric ΦROI is calculated on the images IR,ROI

and ID,ROI . Similar, IR,BG and ID,BG are used to assess the
BG quality by computing ΦBG. In a pooling stage, ΦROI and
ΦBG are combined to a region-selective metric as

Φ(ω, κ, ν) = [ω · Φκ
ROI + (1 − ω) · Φκ

BG]
1
ν (9)

where Φ(ω, κ, ν) ∈ {ΔNHIQM , RRIQA, SSIM, PSNR}, ω ∈
[0, 1], and κ, ν ∈ Z

+. For κ = ν, the expression in (9) is also

known as the weighted LP-norm. However, it will be shown
later that in some cases better quality prediction performance
can be achieved by allowing for the parameters κ and ν to
have different values. Finally, an exponential function is used
to map Φ(ω, κ, ν) to predicted MOS as follows

MOSΦ(ω,κ,ν) = a · eb·Φ(ω,κ,ν) (10)

where a and b are derived from curve tting of Φ(ω, κ, ν) with
MB . The exponential character of MOSΦ(ω,κ,ν) has been
shown to account well for non-linearities in the HVS [4].

4. METRIC DESIGN AND EVALUATION

The region-selective metric design comprised of two parts;
training (T) and validation (V). The training was performed
using images IB and MOS MB from BIT subjective exper-
iments. The pooling function parameters (ω,κ,ν) and expo-
nential mapping parameters (a,b) obtained from the training
are then used to compute the metrics on image set IW and val-
idate their prediction performance using MOS MW . Train-
ing and validation was jointly conducted with respect to two
aims: a) maximizing image quality prediction accuracy; b)
maximizing generalization to unknown images. The former is
evaluated using Pearson linear correlation coef cient ρP be-
tween MOS from subjective experiments and predicted MOS
in (10). Further, Spearman rank order coef cient ρS is used
to measure prediction monotonicity [6]. The generalization is
evaluated using the absolute distance ΔρP = |ρP,T − ρP,V |
between the Pearson linear correlations on training and val-
idation set. A smaller ΔρP relates to a better generaliza-
tion. All combinations of the pooling function parameters
(ω,κ,ν) were taken into account for metric design. However,
no noticeable improvements in prediction performance could
be observed for values of κ and ν larger than 5. Figure 3
shows the Pearson correlations for all metrics over weights
ω, for training and validation, and most favorable parameter
set (κ, ν, a, b). One can see that the curves have very differ-
ent characteristics. Therefore, the weights for the proposed
metrics were individually assessed and selected as follows.

For ΔNHIQM it occurs that ρP,T and ρP,V are very low
where distance ΔρP is smallest. Therefore, the weight was
chosen for maximum ρP,V to maximize prediction accuracy,
at the cost of reduced generalization. On the other hand, for
RRIQA the weight was chosen with respect to maximum
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Fig. 3. Pearson linear correlations ρP for training and validation of the region-selective image quality metrics.

Table 2. Region-selective metric parameters.

ω κ ν a b

MOSNHIQM 0.567 3 5 116.145 -2.296

MOSRRIQA 0.706 5 5 136.763 -0.205

MOSSSIM 1 4 2 26.224 1.148

MOSPSNR 0.522 1 5 0.204 2.855

generalization at only small cost of prediction accuracy. Fi-
nally, for both SSIM and PSNR the maxima of ρP,T and
ρP,V and the minimum of ΔρP coincide at the same weight
allowing for maximum prediction accuracy and generaliza-
tion. For illustration, the weights are marked with an ellipse
in Fig. 3. Taking the above design issues into account, the pa-
rameters providing the best compromise between prediction
accuracy and generalization are listed in Table 2. One can
see that all metrics achieve the best performance for ω > 0.5.
Similar observations where made when using a linear pooling
function with κ = ν = 1. This con rms our earlier conjec-
ture that structural degradations in the ROI have more severe
impact on perceptual quality than degradations in the BG.

The prediction performance measures, corresponding to
the parameters in Table 2, are shown in Table 3. In addition
to the region-selective metrics Φ, we computed whole image
metrics Θ and derived corresponding MOSΘ from curve t-
ting. These values are benchmarks to evaluate if the region-
selective design is favorable for the considered metrics. One
can see that prediction accuracy and monotonicity is enhanced
for all metrics but in particular for SSIM , which is based on
structural similarities. In addition, generalization to unknown
images is improved for RRIQA, SSIM , and PSNR.

5. CONCLUSIONS

In this paper, structural degradations in ROI and BG were in-
dependently assessed to enable region-selective image qual-
ity metric design. For this purpose, a subjective experiment
was conducted to identify ROI for a set of natural images.
Region-selective metrics were trained and validated on data
from two independent subjective quality experiments. It has
been shown that the prediction accuracy is signi cantly im-
proved by using the region-selective quality metric design as
compared to quality prediction on the whole image.

Table 3. Prediction accuracy and monotonicity.

ρP,T ρP,V ΔρP ρS,T ρS,V

MOSNHIQM Θ 0.905 0.869 0.036 0.861 0.871

Φ 0.929 0.888 0.041 0.892 0.875

MOSRRIQA Θ 0.769 0.848 0.079 0.677 0.823

Φ 0.83 0.83 0 0.752 0.797

MOSSSIM Θ 0.6 0.638 0.038 0.461 0.612

Φ 0.71 0.725 0.015 0.582 0.683

MOSPSNR Θ 0.778 0.741 0.037 0.644 0.632

Φ 0.792 0.78 0.012 0.695 0.751
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