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ABSTRACT

Over-complete representations of images such as undecimated wa-
velets have enjoyed immense popularity in recent years. Though
they are efficient for modeling singularities and edges, natural im-
ages also consist of textures that are difficult to capture with any
canonical transformation. In this work, we develop a new modeling
strategy with a rigorous treatment of textured regions. Using princi-
pal components analysis as an approximate classifier for edges and
textures, we partition an image into compressible and incompress-
ible regions—with corresponding models matching their behaviors.
A posterior median-based denoising method using these models is
described with preliminary results that demonstrate the effectiveness
of this approach.

Index Terms— principal components analysis, sparsity, image
denoising, image modeling, textures.

1. INTRODUCTION

Owing to the energy compaction properties, transform-based image
representation provide a convenient and efficient platform for mod-
eling image data. With the underlying assumption that the image
signals live on a lower-dimensional subspace, energy compaction
properties promote sparsity in the transform domain that enable im-
age processing methods to distinguish signal from noise, and thereby
help preserve image features. Redundant dictionaries, frames, and
undecimated wavelets are well-documented examples of over-com-
plete bases aimed at approximating the underlying signal with fewer
basis vectors [1–5].

Explicit modeling of sparsity has been demonstrated to work
well for a number of image processing applications [6–10]. For
example, compressive sensing schemes reconstruct signals from its
under-sampled measurements by effectively limiting the number of
nontrivial transform coefficients via L1 minimization [7, 8]. Alter-
nating projection methods also yield output images that are sparse in
some canonical transformation [9]. Posterior median is a statistically
motivated estimation techniques that takes advantage of the sparsity
encoded in the form of a prior distribution on the transform coeffi-
cients [10]. The existing work in these areas have helped clarify the
advantages to promoting sparsity and to incorporating it explicitly
into modeling strategies.

In examining the compressibility of natural images, however, re-
gions such as textures that do not exhibit spatial redundancies pose a
challenge. Though there exist generative models used in applications
such as texture synthesis [11,12], an image feature that falls into this
category is not easily generalizable because it is often a unique in-
stance of signal energy permeating across multiple sub-bands and
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Fig. 1. PCA eigenvectors derived from training image patches
(8 × 8). Those corresponding to large eigenvalues resemble im-
age features such as edges and smooth regions, whereas those cor-
responding to small eigenvalues does not contain meaningful struc-
tures.

coefficients (i.e. incoherent with respect to the choice of basis). The
sparsity-based approaches to image modeling therefore amount to
treating textures as a series of small edges.

In light of this, we propose a statistical model of the image patch
f and corresponding image denoising strategy that embody both
the compressible and incompressible signal features. Given a noisy
image patch g, the hybridization of the sparse and non-sparse fea-
tures is facilitated via principal component analysis (PCA)—trained
over a large image database, PCA acts as an approximate classifier
for textured and non-textured regions. Conditioned on the type of
regions we identified, we devise different modeling and denoising
strategies. We adopt a Bayesian statistics point of view, and model
the signals in terms of the prior probability distribution of the latent
variable (p(f )) and the likelihood of the observation conditioned on
the latent variable (p(g|f )). The posterior median (which minimizes
the L1 risk) is used to estimate the image signal since it induces a
thresholding rule that attenuates observed coefficients which are suf-
ficiently small all the way to 0.

2. PCA-BASED PRIOR MODEL

In this section we consider developing a prior model for images us-
ing PCA.We restrict our attention to small individual patches of size√

K × √
K (where

√
K is say 8). Each patch can then be thought

of as a point in R
K . We postulate that patches that appear in nat-

ural images do not occur uniformly in this space and that in fact
their distribution is highly localized. Suppose we first perform PCA
on patches chosen randomly from a training set of natural images—
define {φi ∈ R

K}, i ∈ {1 . . . , K} as the decorrelated orthonormal
basis where the index of the eigenvectors correspond to a decreasing
ordering of the magnitudes of the eigenvalues.
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Fig. 2. Maps of the (a)L0.3 norm in the PCA domain, and (b) Energy
contained in C⊥

I for the Barbara image.

Select examples of 8 × 8 eigenvector patches are illustrated in
Figure 1. The eigenvectors corresponding to large eigenvalues re-
semble edges and shapes with large features, whereas those corre-
sponding to small eigenvalues exhibit less meaningful features. This
is consistent with our presumption that spatially redundant features
such as edges are compressible and sparse; and that the textures that
appear in the training sets are unique instances that do not generalize
to a larger class of image signals. It leads us to expect a partitioning
in the PCA transform such that compressible features are contained
entirely within the subspace CI = span{φi : i < I} for some
I < K. On the other hand, incompressible features live in CI ⊕ C⊥

I

(where C⊥
I = span{φi : i ≥ I} is the complement of CI ) and are

likely to be incoherent with any choice of basis {φi ∈ R
K}. It

can be seen from comparing a map of the L0.3 norm (as an approx-
imation to L0) of the PCA components and a map of the energy in
C⊥

I across the Barbara image that spatially redundant features such
as smoothness and edges indeed have sparse representation in CI ;
and the regions lacking localization for a particular choice of co-
ordinates as indicated by L0.3 coincide almost perfectly with areas
of non-negligible energy concentration in C⊥

I and with the textures
in the image. We conclude that non-textured regions are sparse in
the PCA domain (and in CI in particular), and that the components
in C⊥

I are only required to explain textures. This suggests that statis-
tical treatment of the components in CI and C⊥

I should be different.

Define x = Φf , the PCA coefficients corresponding to the
noise-free image patch f ∈ R

K , where Φ = [φT
1 . . . , φT

K ]T ∈
R

K×K . Owing to the decorrelating properties of PCA transforms,
we assume that the coefficients {xi : i < I} are independent and
thus we model them one component at a time. As illustrated in Fig-
ure 3(a), (with the exception of x1, the highest eigenvalue compo-
nent) a typical empirical log-histogram of coefficients corresponding
to vectors in CI is heavy tailed, and we fit different functions to it—
namely Gaussian, Laplace, t-Student, and mixture of two Gaussians.
We find that the mixture of two Gaussians provides the best fits. In
this paper, in order to encode the sparse nature of the coefficients
explicitly, we simplify the Gaussian mixture models to a mixture of
point mass (about zero) and a normally distributed variable:

xi
i.i.d.∼ πiδ(0) + (1 − πi)N (0, σ2

i ) i < I , (1)

where πi and σ2
i are component-dependent parameters.

The coefficient of the highest variance basis vector, x1, cor-
responding to the highest eigenvalue from PCA seems to have a
near-uniform distribution over a large range (See Figure 3(c)). Note
that any denoising estimator assuming a uniform prior distribution
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Fig. 3. The empirical log-histogram of the PCA coefficient values
fitted with a t-distribution, a Gaussian distribution, a Laplace dis-
tribution and a mixture of two Gaussians(red=histogram, black=t-
distribution, green=Gaussian, pink = Laplace, blue= mixture model).
Near-uniform distribution in (c) has long tail after removing the low-
pass component from the image, (d), yielding a better model fit.

amounts to leaving this component unchanged. In practice, it does
not pose a problem because φ1 is effectively the mean patch, which
is typically low-pass and has the highest signal strength. Owing
partly to the limited spatial support, however, the filtering induced
by computing the mean of small patches is far from ideal as the at-
tenuation at high frequencies is poor. To correct this problem, PCA
is performed on patches taken from images whose low-pass compo-
nents have been removed first (the actual low-pass filter may have a
support larger than the size of the patches). Figure 3(d) illustrates
that data now provides a better fit with the model in (1).
As illustrated in Figure 3, the empirical log-histogram of the co-

efficients corresponding to vectors in C⊥
I also have a heavy tailed

distribution. Coefficients in {xi : i ≥ I}, however, are not in-
dependent of each other, though they may be uncorrelated (to the
extent that incoherence with any canonical basis implies lack of re-
dundancy). To borrow from the strength of other channels, the coef-
ficients {xi : i ≥ I} are tied as:

[xI , xI+1 . . . , xK ]T ∼ λδ(0) + (1 − λ)N (0, σ2
⊥Σ), (2)

where λ, σ2
⊥ andΣ = diag(σ2

I . . . , σ2
K) are parameters.

In statistics it is often accepted that the error in estimating a large
number of parameters from noisy data (in the case of image denois-
ing) offsets the benefits of having a superior, more complex model.
After computing the covariance matrix of natural image patches used
in PCA based on a set of randomly sampled patches from the collec-
tion of clean natural images, we therefore propose to estimate some
of the hyper-parameters from the same training set. Assuming that
the training set contains some noise of nominal variance, we train
over the following model to recover {πi, σ

2
i }i<I :

x̃i ∼ πiN (0, σ2
ni) + (1 − πi)N (0, σ2

i + σ2
ni). (3)

The parameters are selected using the Expectation Maximization
(EM) algorithm [13] to maximize the likelihood of the observed data.
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To estimate the parameters for the components in C⊥
I , we first

compute the maximal likelihood estimates of λ using EM. The other
parameters, σ2

⊥ andΣ, however, are hand-picked and estimated from
each noisy image itself respectively, as we expect that the texture
profiles in the training sets are unique instances that does not corre-
spond well to the noisy image at hand.

3. ESTIMATION ALGORITHM

In this section, a denoising algorithm is proposed for images cor-
rupted by additive white Gaussian noise (AWGN) with variance σ2

n.
The noisy image is first filtered to remove the low-pass components
and the PCA-based prior model is used to compute a clean estimate
of the high-passed image. To this end, the high-passed image is re-
arranged into a set of overlapping patches {gj} of size √K ×√

K
where j is an index over patch locations. The observed patch gj is
related to the corresponding clean patch f j as

g
j = f

j + n
j
, n

j ∼ N (0, σ̃2
nI), (4)

where σ̃2
n is the variance of the noise in the high-pass component

(σ̃2
n = σ2

n〈h, h〉 for a high-pass filter with impulse response h).
Defining xj = Φf j and yj = Φgj , the posterior distribution

of xj given yj is derived by combining the prior models in (1) and
(2) with the observation model in (4). Note that as PCA generates an
orthonormal basis, the noise in yj is also AWGN with variance σ̃2

n.
The components {xj

i : i < I} (i.e. those in CI ) are independent and
their posterior distribution is given by

xj
i |yj

i ∼ π̂j
i δ(0) + (1 − π̂j

i )N
„

σ2
i yj

i

σ2
i + σ̃2

n

,
σ̃2

nσ2
i

σ̃2
n + σ2

i

«
, (5)

where π̂j
i is the posterior mixture weight:

π̂j
i =

πiN (yj

i |0, σ̃2
n)

πiN (yj
i |0, σ̃2

n) + (1 − πi)N (yj
i |0, σ2

i + σ̃2
n)
.

The estimate x̂j

i of xj

i that minimizes the L
1 risk in the transform

domain is the median of (5) and can be shown [10] to be given by:

x̂j
i =

8>>>><
>>>>:

0, if π̂j
i ≥ 0.5

sign(yj
i )max

„
0,

σ2

i |y
j

i
|

σ2

i
+σ̃2

n

+

r
σ̃2

nσ2

i

σ̃2
n+σ2

i

F
−1

„
0.5−π̂

j

i

1−π̂
j
i

««
,

otherwise

(6)
where F(x) = 1/2(1 + erf(x/

√
2)) is the cumulative distribution

function of the standard normal distribution.
Next, Σ is estimated from the observed patches {gj} to fit the

texture profile of the image. Specifically ∀i ≥ I , σ2
i is computed

as σ2
i = Var({yj

i }j) − σ̃2
n. These values are thresholded to ensure

that they are at least four times the noise variance σ̃2
n. The posterior

distribution for the C⊥
I components is similar to (5) except that the

posterior mixture coefficient is pooled across all the channels and
also in a small spatial neighborhood. Since the mixture coefficient
here is a measure of the confidence that a particular patch contains
texture, cues from neighboring patches are used by tying the mixture
coefficients in a 3 × 3 window of neighboring patches and asserting
that either all or none of them are textured. The resulting posterior

distribution of x⊥
I

j
= [xj

I . . . , xj

K ]T given y⊥
I

j
= [yj

I . . . , yj

K ]T is

x
⊥
I

j |y⊥
I

j ∼ Λ̂jδ(0) + (1 − Λ̂j)N (μj , Σ̃), (7)

where η(j) is the 3 × 3 spatial neighborhood of j and

μ
j = σ2

⊥Σ(σ2
⊥Σ + σ̃2

nI)−1
y
⊥
I

j

Σ̃ = σ̃2
nσ2

⊥Σ(σ2
⊥Σ + σ̃2

nI)−1

Λ̂j =

Q
j′∈η(j) λ̂j′

Q
j′∈η(j) λ̂j′ +

Q
j′∈η(j)(1 − λ̂j′)

λ̂j =
λN (y⊥

I

j |0, σ̃2
nI)

λN (y⊥
I

j |0, σ̃2
nI) + (1 − λ)N (y⊥

I

j |0, σ2
⊥Σ + σ̃2

nI)
.

The estimates {x̂j

i : i ≥ I} can now be computed as the medians of
the marginal distributions from (7) in a similar way as in (6).

Given all the estimates {x̂j

i}, the estimate f̂ j of the clean patch

f j is computed as f̂ j = Φ
T x̂j ; the redundant estimates due to

patch overlaps are averaged to yield the denoised high-passed image.

4. EXPERIMENTAL RESULTS

We tested the proposed denoising algorithm on three images (Cam-
eraman, Lena and Barbara) synthetically corrupted by AWGN. We
chose the patch size to be 8×8 and the number of components in C⊥

I

to be 32. Training was done on 200,000 patches randomly sampled
from 600 images downloaded from the website “flickr.com”.
We compared the proposed algorithm with the wavelets-based

method (using Daubechies-4 wavelets) described in [14]. Table 1
lists the quality of the denoised images for both algorithms in terms
of the structured similarity index (SSIM) metric [15]. In Figure 4,
we show the results of the two methods on portions of the Barbara
image. The results for the two methods are comparable both visu-
ally and in terms of SSIM. It is interesting to note that the proposed
algorithm, in general, performs better in smooth and structured re-
gions and the wavelets-based method does better in textured regions
while generating more artifacts in smooth and structured regions.
This is largely because we distinguish non-textured regions from
textured ones by pooling observations across channels in C⊥

I , and
then suppress all the components in C⊥

I if we detect a non-textured
region. This pooling allows us to avoid the “blips” corresponding
to single low-variance components that we see in the estimates of
the wavelets-based algorithm. Also while the proposed method ap-
pears to be effective in separating sparse features from non-sparse
ones, non-sparse features may need to be modeled more accurately
for better denoising of textured regions.

5. DISCUSSION

In this work, a method has been described for modeling sparse and
non-sparse image features separately using PCA on small image
patches. It was shown that while sparse features like distinct shapes
and edges lie almost entirely in the subspace spanned by higher-
variance PCA components, the remaining components only play a
role in describing textures. Independent and pooled Gaussian mix-
ture models were used to statistically describe these two sets of com-
ponents respectively. A denoising strategy was formulated based on
these models with encouraging results. In future work, we plan to
extend this model to separately describe the distribution of sparse
components conditioned on the patch being detected as textured—
possibly by using supervised learning on training patches that are
labeled as textured or un-textured. We shall also explore denoising
using this model under signal-dependent noise.
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Fig. 4. Comparisons on two different parts of the Barbara image. (a) Original image, (b) Noisy image with σ2
n = 512, denoised estimates

using the (c) Proposed method, and (d) Algorithm described in [14].

Image σ2
n Proposed method Method in [14]

Cameraman 128 0.936078 0.941784
512 0.878093 0.887861
1152 0.834685 0.841675

Lena 128 0.895391 0.901787
512 0.838272 0.853207
1152 0.792270 0.815030

Barbara 128 0.911451 0.916306
512 0.821288 0.840569
1152 0.737160 0.769034

Table 1. Comparison of SSIM values for proposed method and the
algorithm described in [14] on different images and noise variances.
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