
DETERMINING THE PARAMETERS IN REGULARIZED SUPER-RESOLUTION
RECONSTRUCTION

Marcelo V. W. Zibetti, Joceli Mayer

Federal University of Santa Catarina
Department of Electrical Engineering

Florianópolis, Brazil

Fermín S. V. Bazan

Federal University of Santa Catarina
Department of Mathematics

Florianópolis, Brazil

ABSTRACT

We derive a novel method to determine the parameters for regu-
larized super-resolution problems. The proposed approach relies on
the Joint Maximum a Posteriori (JMAP) estimation technique. The
classical JMAP technique provides solutions at low computational
cost, but it may be unstable and presents multiple local minima. We
propose to stabilize the JMAP estimation, while achieving a cost
function with an unique global solution, by assuming a gamma prior
distribution for the hyperparameters. The resulting fidelity is simi-
lar to the quality provided by the best methods such as the Evidence,
which are computationally expensive. Experimental results illustrate
the low complexity and stability of the proposed method.

Index Terms— Super-resolution, regularization, Bayesian esti-
mation, JMAP.

1. INTRODUCTION

Research on super-resolution (SR) methods dates back to the 90’s
when the authors in [1] employed Fourier domain methods. Since
then, many approaches have been proposed, including projections
onto convex sets (POCS) [2], non-uniform interpolation [3] and it-
erative back-projection [4]. Regularized SR approaches based on
maximum a posteriori (MAP) and regularized least squares appeared
in [5, 6]. In general, regularized approaches minimize a cost func-
tion composed by the residual associated with the estimated high-
resolution (HR) frame plus another term, called the prior term, used
to regularize the problem.

One of the difficulties in SR is the existence of motion error be-
tween frames caused by imprecise motion estimation or by occlusion
of objects moving in the scene. Motion error reduces the effective-
ness of SR methods and generates some artifacts in the estimated HR
image [7, 8]. To overcome this problem, [5, 6] propose to weight the
residuals independently. However, the choice of proper weighting
values is a difficult problem. In practice, weighting values as well
as the regularization parameter have to be estimated from the data,
which increases the complexity of the problem. The joint determi-
nation of weights and the regularization parameter, simply called
multi-parameter problem in this paper, is addressed in [7, 8]. A sta-
tistical method for the problem, called Evidence, is proposed in [9].
The method is stable and provides good quality results. However it
is computationally demanding for general SR problems and applies
only to block-circulant matrices. Gradient-based methods [7, 8] es-
timate the HR frame and the parameters at each iteration. These

This work was supported by CNPq under grants number 140543/2003-

1 and number 300487/94 - 0(NV) (e-mails: marcelo.zibetti@terra.com.br,

fermin@mtm.ufsc.br, mayer@eel.ufsc.br).

methods have been shown to be stable and are, in general, faster
than Evidence but the quality of the estimated frame is inferior.

We address the determination of parameters for the traditional
regularized SR problem with multiple parameters. The regularized
SR algorithm is reviewed in Section 2. In Section 3, the parameters
estimation problem is addressed using the Joint Maximum a Pos-
teriori (JMAP) estimation technique [10]. The classical JMAP ap-
proach, which assumes uniform density for the hyperparameters is,
in general, unstable [10]. To circumvent this, we assume a gamma
probability density for the hyperparameters in order to produce a sta-
ble algorithm with a unique global solution. Numerical experiments
presented Section 4 illustrate that the proposed method provides HR
frames with the same quality as classical methods such as Evidence
[9] but at low computational cost. Section 5 concludes this paper.

2. REVIEW OF REGULARIZED SR METHODS

Traditional regularized SR algorithms [6, 5] produce a single HR
frame from a sequence of LR frames by solving the problem:

f̂k = arg min
fk

L∑
j=1

αj,k‖gj −Cj,kfk‖22 + λk‖Rfk‖22 (1)

Here, gj is a vector of size N × 1 that contains pixel information in
lexicographic order of the LR frame, captured at instant j, fk, of size
M × 1, M ≥ N , contains pixel information of the HR image cap-
tured at instant k, and Cj,k = DjMj,k. Matrix Dj , of size N×M ,
models the acquisition process applied to the HR image fj involving
blurring and subsampling. Matrix Mj,k, of size M ×M , represents
the motion transformation, or warping. It can be generated either
from a discretized continuous motion operator, where a parametric
motion is assumed, or from a discrete motion vector field [11]. Ma-
trix R, of size P ×M , represents the prior term, introduced to en-
force an unique and stable solution to (1). It is usually a discrete
differential operator. The regularization parameter, λk, dictates the
influence of the prior term in the solution.

In these algorithms it is assumed that the error level on the data
is different for each frame, specially due to different levels of motion
error in each frame. Thus the residuals related to the LR frames are
weighted individually by αj,k in (1). The αj,k values tend to be
small with the temporal distance between frames, |j − k|, since the
frame similarity decreases with the distance.

3. PARAMETERS ESTIMATION METHOD

This section describes the proposed approach to estimate the param-
eters based on the joint maximum a posteriori (JMAP) estimation.
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JMAP is a Bayesian estimator that focus on the estimation of the
HR images and the parameters together [12].

3.1. Classical JMAP

The classical JMAP estimative is given as:

f̂k, θ̂θθk, β̂k=arg max
fk,θθθk,βk

ρ(fk, θθθk, βk|ggg) (2)

where ρ(fk, θθθk, βk|ggg) is the posterior density, ggg = [gT
1 , . . . ,gT

L ]T

are the LR frames, fk is the HR image, θθθk = [θ1,k, . . . , θL,k] are the
data hyperparameters, and βk is the hyperparameter of the image
prior density, and

ρ(fk, θθθk, βk|ggg) ∝
[

L∏
j=1

ρ(gj |fk, θj,k)ρ(θj,k)

]
ρ(fk|βk)ρ(βk) (3)

Functions ρ(θj,k) and ρ(βk) are the prior densities assigned to the
hyperparameters, also known as hyperpriors [9, 12]. The data den-
sity, ρ(gj |fk, θj,k), and the image prior density, ρ(fk|βk), are the
same as used in MAP estimation. Let us assume the following Gaus-
sian densities

ρ(gj |fk, θj,k) =
1

(2πθj,k)N/2
e−‖gj −Cj,kfk‖22/(2θj,k)

(4)

where θj,k, in this case, is the variance of the LR frame error, and

ρ(fk|βk) =
1

(2πβk)M/2
e−‖Rfk‖22/(2βk)

(5)

In this work each θj,k and βk are assumed independent of each other.

In MAP estimation the hyperparameters are assumed to have
fixed values [12], whereas in JMAP estimation, the hyperparameters
are random values that need to be estimated from the data as well as
the HR image. Thus, in the same way that an image prior is needed
for the estimation of the HR image, the hyperpriors are needed for
the estimation of the hyperparameters. If one assumes uniform den-
sities for the hyperpriors as in [9, 10], the values are equiprobable,
therefore ρ(θj,k) ∝ cte and ρ(βk) ∝ cte, for 0 < θj,k, βk < ∞.
The JMAP estimation with these hyperpriors becomes:

f̂k, θ̂θθk, β̂k = arg min
fk,θθθk,βk

L∑
j=1

‖gj −Cj,kfk‖22
2θj,k

+

L∑
j=1

N

2
ln θj,k

+
‖Rfk‖22

2βk
+

M

2
ln βk + cte (6)

From (6) it is possible to find the hyperparameter for fixed fk,
differentiating (6) with respect to the hyperparameters and setting
the result to zero. This leads to the following closed form solutions:

θ̂j,k =
‖gj −Cj,kfk‖22

N
, β̂k =

‖Rfk‖22
M

. (7)

for the data hyperparameters and for the image hyperparameter, re-
spectively. By substituting (7) into equation (6), leads to:

f̂k = arg min
fk

L∑
j=1

ln(‖gj −Cj,kfk‖22) +
M

LN
ln(‖Rfk‖22). (8)

The minimizer in (8) is shown to be the solution of

L∑
j=1

αj,kC
T
j,kCj,kfk + λkR

T Rfk =

L∑
j=1

αj,kC
T
j,kgj (9)

where λk and αj,k are:

λk =
M

N

‖gk −Dkfk‖22
‖Rfk‖22

, αj,k =
‖gk −Dkfk‖22
‖gj −Cj,kfk‖22

(10)

The cost function in (8) is non-convex and the estimation unsta-
ble [9, 12, 7]. It requires proper constraining to avoid divergence. In
the Bayesian statistical sense, constrains can be expressed by defin-
ing proper hyperparameter priors [12, 9]. When employing uniform
densities, as done in the classical JMAP, the hyperparameters are not
properly constrained and generate unstable estimates. More restric-
tive hyperpriors, on the other hand, lead to a stable estimative and a
globally convex problem with a unique minimum.

3.2. Proposed Method

In the JMAP method, the density of the data or the prior density
of the images is connected with the density of its respective hyper-
parameter. For example, the image prior, ρ(fk|βk), may enforce
that the HR image is smooth, constraining the estimative to smooth
images. The associated hyperparameter, βk, defines “how smooth”
is the resulting image. However, when an uniform density is as-
signed to the hyperparameter, as ρ(βk) ∝ cte, then it is implicitly
assumed that an oversmooth image, like a constant intensity value
image, when βk → 0, is as likely to occur as a noisy image, like
the one produced by a completely unregularized estimation, when
βk → ∞. A good hyperprior density should prevent the hyper-
parameter to reach very extreme values. The desired prior density
for the hyperparameters needs to enforce positive values and pro-
vide low probability for very low or very high values. Among sev-
eral candidates, the gamma density, with specific parameters so as to
make it similar to the chi-squared density, has been shown practical
and theoretical advantages over the alternatives.

The gamma densities for the hyperparameters are given by

ρ(θj,k) =
θ
(aj,k−1)

j,k b
−aj,k

j,k

Γ(aj,k)
e
−θj,k

bj,k , ρ(βk) =
β

(c−1)
k d−c

Γ(c)
e
−βk

d

(11)
where aj,k and c are the scale factors, bj,k and d are the shape fac-
tors, and Γ(x) is the gamma function. Also, E{θj,k} = aj,kbj,k,
var{θj,k} = aj,kb2

j,k, E{βk} = cd and var{βk} = cd2.
Substituting the gamma densities in equation (2) leads to:

f̂k, θ̂θθk, β̂k =arg min
fk,θθθk,βk

L∑
j=1

[‖gj−Cj,kfk‖22
2θj,k

+

(
N

2
−aj,k+1

)
lnθj,k

+
θj,k

bj,k

]
+
‖Rfk‖22

2βk
+

(
M

2
− c+1

)
ln βk +

βk

d
+ cte (12)

Note that when aj,k = N/2 + 1 and c = M/2 + 1, the gamma
density has nearly the same shape as the chi-squared density. These
values for aj,k and c will be used in our development, they provide a
necessary condition to achieve a globally convex problem. The bj,k

and d will be replaced by expressions involving the expected values
of the hyperparameters, namely bj,k = E{θj,k}/aj,k = mθj,k/aj,k

and d = E{βk}/c = mβk/c. Assigning the mentioned values for
aj,k, bj,k, c, and d, and applying some algebra, equation (12) reduces
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to:

f̂k, θ̂θθk, β̂k =arg min
fk,θθθk,βk

L∑
j=1

‖gj−Cj,kfk‖22
2θj,k

+
θj,k(N + 2)

2mθj,k

+
‖Rfk‖22

2βk
+

βk(M + 2)

2mβk

(13)

Differentiating equation (13) with respect to the hyperparameters,
for fixed f , leads to the following estimative

θ̂j,k =
√

mθj,k

‖gj −Cj,kfk‖2√
N + 2

, β̂k =
√

mβk

‖Rfk‖2√
M + 2

. (14)

Substituting the results in (14) into (13), gives

f̂k = arg min
fk

L∑
j=1

γj,k‖gj −Cj,kfk‖2 + μk‖Rfk‖2 (15)

where

μk =

√
mθk,k (M + 2)

mβk (N + 2)
, γj,k =

√
mθk,k

mθj,k

(16)

Considering the gradient of the cost function in (15), the solution
of this optimization problem is found when

L∑
j=1

αj,kC
T
j,kCj,kfk + λkR

T Rfk =

L∑
j=1

αj,kC
T
j,kgj (17)

where the parameters are defined by

αj,k = γj,k
‖gk −Dkfk‖2
‖gj −Cj,kfk‖2 , λk = μk

‖gk −Dkfk‖2
‖Rkfk‖2 (18)

The values of γj,k and μk can be chosen from average values,
as in (16), or from an analysis of the estimation error which gives

γj,k = 1/(1 + |j− k|), μk =
√

tr(DT
k Dk)/

√
tr(RT R) (19)

This choice will be carefully addressed in a further paper.
The proposed method involves a convex cost function with a

unique minimum. Also, equation (15) can be minimized using fast
methods as the Non-Linear Conjugated Gradient (NL-CG) [13].

4. EXPERIMENTS

The following experiment evaluates the performance of the meth-
ods in finding the parameters for the SR algorithms discussed in this
paper. Given a HR image sequence, with known or previously es-
timated motion, the simulated acquisition process was performed,
employing the average of a squared area of R × R pixels with sub-
sampling factor of R, where R = 2, 3, and an additive white Gaus-
sian noise with variance adjusted to achieve a fixed SNR 1. Two sit-
uations were considered: high acquisition noise, with SNRA=20dB
and medium noise, with SNRA=30dB. These noise levels are the
typical levels found in commercial image sensors2 [14].

The quality of the HR sequence recovered with the parameters
found by a particular method is measured in terms of SNR [15].

1The acquisition SNR is defined as SNRA = 10 log10(σ2
Df/σ2

ηηη), where

σ2
Df is a LR noise free sequence variance and σ2

ηηη is the noise variance.
2Typical acquisition SNR may vary from 10dB to 40dB, depending on the

exposure [14].

Computational effort of each method was evaluated by considering
the time it takes for convergence, where convergence is assumed to
be reached when the improvement in quality is less 10−2 dB. This
procedure was repeated using 20 random noisy realizations for each
noise level. The entire experiment was repeated for each image se-
quence of a total of 6 different image sequences. In some of the
sequences, the motion was artificially generated without consider-
ing occlusions in the scene, whereas in other sequences, which are
from real video sequences, the motion was estimated using the opti-
cal flow method [16]. In this case, linear interpolated versions of the
LR images were employed. The estimated motion vectors are not
completely reliable in this case, therefore, occlusions and motion er-
rors occur in several places in the sequence. In this evaluation, the
procedure of detection and removal of the occlusion regions was not
considered in order to evaluate the performance of the methods in
finding the best weighting values.

The methods used to find the parameters are mentioned below.

K-HE - A deterministic method proposed in [8].

EVID - The statistical method Evidence, proposed in [9]. To
apply this method to non block-circulant matrices, the trace of the
inverse matrix is statistically estimated.

JMAP - The classical JMAP approach [10] as equation (8), us-
ing GC to find the HR images with (7) to update the parameters.

PROP - Proposed method with minimization using GC-NL.

All these methods are iterative. The Conjugate Gradient method
is used in EVID, JMAP and in the proposed method to find the HR
images. K-HE is limited to the Gradient method. The same ini-
tial conditions are considered: the initial HR image is a null image,
and the initial parameters is randomly chosen from 10−6 to 106. In
addition to these methods, the results obtained by the following pre-
determined parameter were also compared:

KNOWN - Employs the MAP estimative where the parameters
are known a priori. Since the noise and the original HR images are
known in the experiments, the hyperparameters are computed with-
out difficulties. This method is used as reference only, since it cannot
be used in practice.

The average quality of estimated images, its standard deviation
and the relative computational time (with respect to KNOWN) re-
sulting from the respective methods are shown in Table 1. Some
visual results are shown in the Figure 1.

Table 1 shows that the quality obtained by the proposed method
is similar to the results of KNOWN. Moreover, the results illustrate
the low computational cost provided by the proposed method. The
performance of the proposed method was superior than the K-HE,
recently proposed for the multi-parameter traditional SR. One can
notice the instability of the classical JMAP by its high STD results.

Table 1. SNR average in dB, standard deviation (STD), and relative

computational time (CT) for multi-parameter SR algorithm

Method R=2 SNRA=20dB R=3 SNRA=30dB

SNR STD CT SNR STD CT

K-HE 16.5 1.9 20.6 14.0 2.4 46.0

EVID 20.8 1.6 90.2 19.3 1.1 466.1

JMAP 15.3 6.1 66.5 11.6 3.6 84.3

KNOWN 22.0 0.6 1.0 20.9 1.1 1.0

PROP 22.7 0.9 1.8 21.2 1.9 2.7

Figure 1 illustrates the performance of the methods in control-
ling the weighting in order to avoid the distortions caused by the
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large motion errors. One can see that the results of the proposed
method were very similar to the results of KNOWN. Also, in this
example, one can see that the distortions caused by the occlusions
were not completely removed, but they were significantly attenu-
ated. The complete removal of these distortions requires the use of
a robust SR method [17], or an occlusion and motion error detection
with a removal procedure [18].

(a) Captured Image (b) K-HE (SNR=14.7dB)

(c) EVID (SNR=16.2dB) (d) KNOWN (SNR=17.1dB)

(e) PROP (SNR=17.2dB) (f) Original Image

Fig. 1. Visual results from an image of the sequence Flower Garden,

with R=3 and SNRA=30dB.

5. CONCLUSIONS

In this paper, a technique to determine the parameters for super-
resolution methods is proposed. The problem of parameters esti-
mation has been addressed with the Bayesian theory, using Joint
Maximum a Posteriori (JMAP) estimation. A gamma density is pro-
posed for the hyperparameters in order to provide a globally convex
cost function, resulting in a unique solution. The proposed method
provides very low computational cost and produces estimated im-
ages with the same quality as the ones provided by the best classical
methods. We provide a set of experiments to illustrate the superior
efficiency and stability of the proposed technique when compared
with other competing methods.
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