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ABSTRACT

We propose a new method to solve a problem of image

restoration with many different aspects: reconstruction from

irregular samples, deconvolution and denoising. The model

we propose is robust to different kind of noises, in particu-

lar, impulse and Gaussian noise. We compare our results to

the ones obtained in [1] and show that our problem presents

some advantages particularly in satellite imaging. At last,

we conclude on a discussion about resolution schemes for

variational problems’ minimization and propose some faster

resolution shemes for our problem and the one in [1].

Index Terms— Irregular sampling, Variational methods,

Fourier Analysis, Satellite imaging.

1. INTRODUCTION

The problem of reconstructing an image from a random set

of irregular samples has been fewly explored and becomes a

problem of great interest in various domain such as biomedi-

cal imaging or satellite imaging. The whole difficulty of such

a problem is to find a method to restore a regularly sampled

image from its irregular samples knowing the shifts between

the irregular grid and the regular grid. Hence, the problem

can be seen as finding the inverse of a regular to irregular

sampling operator. The difficulty is that the positions of the

irregular samples are totally arbitrary and such a system may

not be invertible.

Various method have been developed, in particular exact re-

construction methods ([2], [3]) which require large sets of

data without any noise, and variational methods ([4], [1]) that

require more computation time but are more adapted to noisy

data. Moreover, using a smoothing term will allow a recon-

struction from an irregular sampling which can be sparse in

some places and very dense elsewhere. We propose a new

The authors would like to thank the Compagny CS in Toulouse (France)

for partial funding and the Space French Agency CNES for providing the

data. We particularly thank Anne Chanié and Pauline Audenino for several
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variational approach to restore satellite images from an irreg-

ular sampling and propose to compare it to the method pro-

posed in [1]. At last, in order to generate an irregular sam-

pling, we used satellite stereoscopic images.

Let’s consider a satellite stereoscopic acquisition of a scene.

Then we have two regular acquisition of the same scene. By

applying the disparities between the two image to the refer-

ence image, we get an irregularly sampled new image which

should be identical to the second image of the stereopsis pair

(appart from some details due to moving objects during the

time between the acquisitions of the stereoscopic pair). As a

matter of fact, the second image can be considered as an ir-

regularly sampled acquisition (in comparison to the reference

image) and the problem of reconstructing the reference im-

age from the second image knowing the disparities between

the two images can be considered as an irregular sampling

problem. A general acquisition model can be described as

follows:

u = ΔΛ.(u0 ∗ h) + n (1)

where u0 is the scene that we want to acquire, h is a convo-

lution kernel, for instance the PSF (Point Spread Function)

of the acquisition system of the satellite, ΔΛ is an irregular

sampling of the scene which can be seen as a sum of Dirac

functions centered at the irregular samples positions:

ΔΛ(.) =
∑

λk∈Λ

δ(.− λk)

At last, the noise n that we consider for our model has

two different aspects: a first part of the noise is due to the ac-

quisition system and can be considered as a white Gaussian

noise, a second part of the noise can be due to errors in the

computation of the disparities between the two images of the

stereoscopic pair. Such an error may have disastrous effects

in urban images: a bad estimation in the position of a sam-

ple located on the top of building (let’s suppose it as a white

pixel), may place this sample in a place where there should be

some shadow (black pixel). As a matter of fact, some errors

in the estimation of irregular samples may completely change

the value of a pixel, which can be seen as an impulse noise.
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Based on the problem proposed in [1] by Almansa et al, and

motivated by the previous discussion, we propose to minimize

the following problem:

‖ΔΛ.(u ∗ h)− g‖1 + λJ(u) (2)

where u is the regular image that we want to reconstruct,

g are the irregular samples, J(u) is the total variation of u
defined by J(u) =

∫ |∇u| and λ a parameter that weights

the regularisation of the solution by the total variation. The

choice of such an approach is justified by three criterion:

• a variational approach will be robust to Gaussian noise.

Even if we use an �1 norm on the data fidelity term,

when the variance of the Gaussian noise is not too

strong (which is the case in satellite imaging), the

smoothing due to the total variation is enough to de-

noise the image.

• a regularisation by total variation will keep the high

gradient zone of the image in place.

• the use of an L1 norm on the data fidelity term will be

robust to impulse noise.

2. DISCRETIZED PROBLEM

In its discrete form, the problem can be matricially defined

by:

‖SHFu− g‖1 + λJ(u) (3)

Where ‖.‖1 is the �1 norm, F is the discrete fast Fourier

transform, H is the Fourier transform of the PSF h of the

satellite, S is a transform that create an irregularly sampled

image from its regular samples in the Fourier domain. This

last operator is described in [3] and [1] and can be fastly com-

puted (the direct computation is in O(N2) ) with the USFFT
(Unequally Spaced Fast Fourier Transform) developed by

G. Beylkin in [5]. For simplicity reasons, let us note A the

operator defined by A = SHF .

The problem of efficiently minimizing an �1 − �1 energy

function such as the one we propose to solve is a difficult

problem. In order to experimentally show the validity of our

model, we propose to use a gradient descent to minimize the

energy function. As the �1 norm is not C1 in 0, we propose to

regularize the �1, norm with a parameter μ:

‖u‖1 =
∑

k

|uk| μ−→ ‖u‖1,μ =
∑

k

√
|uk|2 + μ2 (4)

We finally obtain the following gradient descent:

un+1 = un − τ

(
A∗

(
Aun−g√

|Aun−g|2+μ2

)

−λdiv

(
∇un√

|∇un|2+μ2

)) (5)

Where A∗ is the adjoint operator of A, τ is the gradient de-

scent step and must respect the inequality τ < 2/L, with L
the Lipschitz constant of the problem defined by:

L =
‖A‖22 + λ‖div‖22

μ
(6)

The choice of the parameter μ is very important for two rea-

sons:

• the descent gradient step is directly proportional to μ.

Hence, the bigger μ is, the bigger the gradient descent

step is and the faster the gradient descent will converge.

• A too strong parameter μ causes a bad approximation

of the �1 norm. Hence, the result might become blurry

with a big parameter μ.

In practice we chose the μ parameter experimentally. Once

chosen, this parameter is the same from an image to another

if the two images have the same dynamic.

3. RESULTS

We have tested our algorithm on different images irregularly

sampled. The results seems to be good after our regular re-

sampling (in comparison to the reference image). The method

proposed by Almansa et al gives the same results in terms

of registration. It should be noted that for images without

any noise, a direct reconstruction with a good interpolation

gives the similar result. Nevertheless, as we are dealing with

satellite images, our method has to be robust to additive white

Gaussian noise. In order to test the validity of the registration,

we have subtracted the result obtained with our algorithm to

the reference image. By visualizing the histogram of these

images of differences, it can be seen that the variance is very

low (the standard deviation is equal to 2) after the application

of our algorithm (the mean value is 0). This means that our re-

construction algorithm gives a result near from the reference

image (regularly sampled).

We have tested our reconstruction algorithm on images

irregularly sampled with a signal to noise ratio SNR = 15.5
dB (for a white Gaussian noise). We recall that the signal to

noise ratio is given by the following formula:

SNR = 20 log
σsignal

σnoise

(7)

For this kind of noise, we obtain a reconstruction (regular

resampling + denoising) as good as the one that is obtained

in [1]. For images with a much lower signal to noise ratio

(noise with a larger variance), Almansa et al obtain a better

result with a low regularization, and the same result with a

large regularization. These results are due to the fact that the

�2 norm (on the data fidelity term) is more robust to the white

Gaussian noise than the �1 norm. Nevertheless in practice, the

noise due to satellite sensors is not large enough to observe
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much difference between the two methods.

As it was said before, it is interesting for our algorithm to

be robust to impulse noise. We have tested the quality of

reconstruction with noisy images with 10% of impulse noise.

Contrarily to �2 − �1 methods like the one proposed in [1],

our method proved itself to be robust to this kind of noise. An

�2 − �1 method will need a stronger smoothing with the total

variation to get rid of the same noise. The result of impulse

noise denoising is given on figure 11.

(a) (c)

(c) (d)

Fig. 1. Robustness to noise: (a) Reference Image, (b)

input (irregularly sampled) with additive Gaussian noise

(RSB=15.5dB) and 10% of impulse noise, (c) Result of the

algorithm of Almansa et al (regular sampling + denoising),

(d) Result of our algorithm (regular sampling + denoising)

4. DISCUSSION AND CONCLUSION

We have proposed a novel method to reconstruct satellite

images from an irregular sampling knowing the position of

1Thanks to the CNES agency for allowing us to use their images.

the samples. This method includes a deconvolution by the

PSF of the satellite and was proved to be robust to two

different kind of noises: the Gaussian noise due to satellite

sensor, the impulse noise which can occur with errors on the

estimation of the position of the samples. Our problem is

based on minimizing the energy function given in (2) which

consist on a �1 norm for the data fidelity term and an �1 norm

for the regularization term (total variation). Minizing such an

energy function is called an �1 − �1 problem. Moreover, we

compared our method to the one proposed by Almansa et al
in [1] which is an �2 − �1 problem problem (�2 norm for the

data fidelity term).

The problem of minimzing an �1 − �1 problem is that

the convergence of an iterative algorithm such as the gradient

descent require more iteration in comparison to �2 − �1 prob-

lems. Moreover, dual approaches (for instance Chambolle

algorithm [6]) can be used with �2 − �1 methods and it is

also much more easier to use an accelerated scheme such

as Nesterov’s one [7] [8] [9](for dual and primal problems).

These last resolution schemes can considerably reduce the

number of iterations to the convergence and make �2 − �1
methods much more attractive than �1 − �1. However, to be

in the right configuration for applying Nesterov’s algorithm

on a problem using an operator A, it is either necessary to

know how to do a projection with a convolution with A, or

to be able to compute the inverse of the operator A. As our

case, the operator A depends on the sampling, it may not be

invertible. Another solution for the �2 − �1 problem could

be to use the Prox functions ([10]) with the following scheme:

un+1 = ProxγJ

(
un − γλA∗(Aun − g)

)
(8)

ProxγJ(x) = inf
u

(
J(u) + γ‖u− x‖22

)
(9)

The Prox step can then be efficiently solved using the dual

Nesterov algorithm and the computation of the inverse matrix

of A is not necessary any more. In [11], Bect et al obtained

the same kind of algorithm. A nice solution to �1 − �1 prob-

lems was proposed by Fu et al in [12]. The idea is to refor-

mulate a problem with a non-negativity constraint under the

form of a linear programming problem. If we consider the

following problem:

min
u
‖Au− g‖1 + α‖Ru‖1 (10)

Where R is a regularisation function (if R is the first or-

der difference operator, then ‖Ru‖1 is the total variation of

u). Let v = Au − g and w = αRu. v and w can be

reformulated with their non-negative and non-positive part.

Hence, we have v = v+ − v− and w = w+ − w− where

v+ = max(v, 0), v− = max(−v, 0), w+ = max(w, 0) and

at last w− = max(−w, 0). The problem (10) can now be

reformulated as:

min
u,v+,v−,w+,w−

1T v+ + 1T v− + 1Tw+ + 1Tw− (11)
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With the constraints:⎧⎨
⎩

Au− g = v+ − v−

λRu = w+ + w−

u, v+, v−, w+, w− ≥ 0

At last, (11) can be written as the following linear programing

problem:

min
x

cT x with the constraints Tx = b, x ≥ 0 (12)

Where c, T, x, and b are defined by:

T =
(

A −I I 0 0
αR 0 0 −I I

)
, b =

(
g
0

)

x =

⎛
⎜⎜⎜⎜⎝

u
v+

v−

w+

w−

⎞
⎟⎟⎟⎟⎠ c =

⎛
⎜⎜⎜⎜⎝

0
1
1
1
1

⎞
⎟⎟⎟⎟⎠

The Lagrangian function of (11) is:

L(x, λ, s) = cT x− λ(Tx− b)− sT x (13)

Where λ and s are respectively the Lagrange multipliers for

Tx = b and x ≥ 0.

Once the problem has been reformulated as a linear program-

ing problem, many different schemes exist to solve it. One

of the most popular, and the one used in [12] is the interior

points method (in [12], the authors combine the interior points

method with conjugate gradients). In comparison to a gra-

dient descent, this new scheme is a lot faster, and using an

�1 − �1 method becomes of great interest.
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