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ABSTRACT

In [1] we proposed a hyperspectral imaging model that rep-
resents spectral observations at different wavelengths as
weighted linear combinations of a small number of basis im-
ages obtained through principal component analysis (PCA).
Based on this imaging model we formulated a multiple ob-
servation resolution enhancement method for hyperspectral
imagery. In this work we focus onmaterial speci c resolution
enhancement. We start with pointing out a shortcoming of the
PCA based imaging model. We then introduce modi cations
to integrate linear spectral mixing into the imaging model.
Based on the updated model we introduce and implement
material speci c multiple observation resolution enhance-
ment for hyperspectral imagery. We test the proposed method
on AVIRIS data, and present numeric and visual results.

Index Terms— Hyperspectral imagery, linear mixing,
endmember, spatial resolution enhancement.

1. INTRODUCTION

In [1] we proposed a hyperspectral imaging model that rep-
resents spectral observations at different wavelengths as
weighted linear combinations of a small number of basis im-
ages obtained through principal component analysis (PCA).
Based on this imaging model we formulated a multiple ob-
servation resolution enhancement method for hyperspectral
imagery. In many hyperspectral imagery applications, dimen-
sionality reduction through PCA is an integral component of
the solution. The reason is two-fold: First, limitations on the
computational budget may dictate dimensionality reduction.
Second, in many applications nal results are reported to a
human observer who can not handle the full dimensionality of
hyperspectral data, and dimensionality reduction is required
to render ef cient interpretation possible. Hence, integration
of PCA into the resolution enhancement framework makes
sense. The hyperspectral superresolution technique proposed
in [1] simultaneously reduces dimensionality, suppresses un-
desired noise and performs resolution enhancement on the
transformed data.

However, in certain applications, such as mining and
petroleum exploration, we are interested in detecting speci c
materials with well-de ned spectral signatures. Although
PCA is an effective dimensionality reduction tool, it can not
emphasize individual spectral signatures of interest. This is
a direct result of the fact that principal components represent
the highest variance (information) as a linear combination
of multiple spectral signatures. For example, in military ap-
plications, such as enemy ground observation, camou aged
vehicles may not be directly recognizable if observed in the
main principle component. But if we consider the bands that
represent certain metal or alloys known to constitute such ve-
hicles, detection problem is greatly alleviated. Hence, if we
are interested only in a speci c spectral signature, then all the
other materials in the scene can be considered as interference,
and integrating PCA within the observation model does not
make sense. These observations lead to the idea of material
speci c hyperspectral superresolution.

2. LINEAR MIXING BASED IMAGING MODEL

Typical hyperspectral pixels are not pure in terms of spectral
content, meaning that each hyperspectral pixel is a combina-
tion of several different spectral signatures. Such pixels are
called mixed pixels, as opposed to the pure pixels that con-
sist of a single unique spectral signature. Mixed pixels exist
for one of two reasons. First, the typical spatial resolution
of hyperspectral sensors are in the scale of tens of meters.
Hence, the spatial coverage of each pixel may include several
different materials with different spectral signatures. Second,
regardless of the spatial resolution, distinct materials can be
found as homogenous mixtures. Due to this spectral mixing
phenomenon, hyperspectral pixels are frequently analyzed in
terms of spectral mixing models. Mixing models represent
the acquired hyperspectral pixels as combinations of a limited
number of constituent spectral endmembers, where spectral
endmembers are de ned as spectrally pure features such as
vegetation, soil, etc. Spectral signatures of pure endmembers
are usually de ned under idealized laboratory conditions with
controlled illumination. Although this is a perfectly valid ap-
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proach to obtain spectral endmembers, spectral signatures ob-
tained in controlled laboratory conditions can not re ect the
atmospheric effects present in eld data. To overcome this
shortcoming endmember signatures can be extracted directly
from the observed data. This task is referred to as endmember
extraction, and is typically based on certain properties of the
endmembers. For a detailed treatment of endmember extrac-
tion please refer to [2].
Spectral mixing models provide the foundation for an-

alyzing and processing hyperspectral data. Current mixing
models are based on the simple assumption that within a given
scene, the surface is dominated by a small number of end-
members. The fractions endmembers appear in a mixed pixel
are called fractional abundances. Based on this assumption,
observed pixels are modeled as combinations of these end-
members. Depending on how the combination mechanism
is modeled, different mixing models result. The most popu-
lar mixing model, namely, the linear mixing model (LMM),
assumes that the observed pixels can be represented as lin-
ear combinations of deterministic endmembers. Given a mix-
ing model and the endmembers present in an observed scene,
the task of estimating fractional abundances is referred to as
spectral unmixing. For a detailed treatment of spectral mixing
please refer to [2].
The rst step in applying the hyperspectral image acquisi-

tion model to material speci c superresolution is to integrate a
linear spectral mixing model into the current framework. For
our purposes any linear mixing model is applicable. Once we
have an observation model that relates the observed hyper-
spectral pixels to the endmembers and spatially aliased abun-
dance maps, we can move to superresolution. We shall start
with presenting a projection operator that optimally lters out
undesired spectral signatures, and apply superresolution on
the resulting projected data. The main idea is to project each
hyperspectral pixel onto a subspace orthogonal to the unde-
sired signatures. This operation can be shown to be an optimal
interference suppression process in the least squares sense [3].
Once the interfering signatures have been nulled, we project
the residual onto the signatures of interest and perform super-
resolution of the resulting image planes. This operation max-
imizes the SNR, and results in a small number of resolution
enhanced images of materials that we are interested in.
Let us denote the spatially and spectrally continuous hy-

perspectral pixel with f(x1, x2, λ, k). Then within the limita-
tions of linear mixing model, we have

f(x1, x2, λ, k) =

M∑

j=1

ej(λ)fj(x1, x2, k), (1)

where x1 and x2 are the continuous spatial variables, k is the
observation index, λ is the continuous wavelength, and ej(λ)
denotes the jth endmember. Comparing Eq. (1) with the re-
sults of [1] we see that the derivations presented in [1] are
exactly applicable if we but replace the spectral PCA basis

functions bj(λ) with the spectral endmembers ej(λ). Hence,
the observed pixels can be represented as

gi[m1, m2, k] =

P∑

j=1

si,j

N1−1∑

n1=0

N2−1∑

n2=0

fj[n1, n2, kr]

× hb[m1, m2; n1, n2; k; kr] + v[m1, m2, k],

where si,j is de ned as

si,j
.
=

∫ ∞

0

ej(λ)ri(λ) dλ.

In matrix-vector form

g[m, k] = SHf [m, k] + v[m, k], (2)

where the following shorthand notations are used simplify the
expression:

g[m, k]
.
=

⎡

⎢⎢⎢⎣

g1[m, k]
g2[m, k]

...
gQ[m, k]

⎤

⎥⎥⎥⎦ , f [n, kr]
.
=

⎡

⎢⎢⎢⎣

f
1
[n, kr]

f
2
[n, kr]
...

fP [n, kr]

⎤

⎥⎥⎥⎦ ,

Hf [m, k]
.
=

⎡

⎢⎢⎢⎣

f
1
[n, kr] · hb[m; n; k; kr]

f
2
[n, kr] · hb[m; n; k; kr]

...
fP [n, kr] · hb[m; n; k; kr]

⎤

⎥⎥⎥⎦ ,

S
.
=

⎡

⎢⎢⎢⎣

s1,1 · · · s1,6

s2,1 · · · s2,6

...
. . .

...
sQ,1 . . . sQ,6

⎤

⎥⎥⎥⎦ , v[m, k]
.
=

⎡

⎢⎢⎢⎣

v1[m, k]
v2[m, k]

...
vQ[m, k],

⎤

⎥⎥⎥⎦

f j [n, kr] · hb[m; n; k; kr]
.
=

N1−1∑

n1=0

N2−1∑

n2=0

fj [n1, n2, kr]

× hb[m1, m2; n1, n2; k; kr].

Here Q denotes the number of observed spectral bands, and
P denotes the number of endmembers in the observed scene.
The similarity between inverting Eq. (2) and the spectral

unmixing problem is worth noting. If we choose the down-
sampling ratio as one, that is, if we assume the target and ob-
served images are at the same spatial resolution, then the re-
sulting problem is equivalent to spectral unmixing with mul-
tiple registered observations. The main advantage of such an
approach would be the increased robustness against observa-
tion noise provided by multiple observations for each pixel
location (as a result of spatial registration). When the target
image is of higher resolution, the resulting problem is simi-
lar to the problem described in [1]. By using a POCS based
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iterative inversion algorithm similar to the algorithm outlined
in [1] we could obtain a superresolved abundance map that
would be valuable for subpixel target detection. However,
we will concentrate on superresolving the abundance map of
a single endmember by incorporating an additional step into
the imaging model.

3. MATERIAL SPECIFIC PROJECTION

Without losing any generality, let us assume that we are inter-
ested on a single endmember. All the derivations to follows
can be easily extended to multiple endmembers. Superresolv-
ing a speci c endmember is complicated by the correlation
between endmembers and the presence of noise. A direct
correlation-based approach by projecting the observed pixels
on the endmember of interest is suboptimal [3]. To see this,
note that along with noise, all the endmembers we are not in-
terested act as interference, and the correlation between the
target endmember and these undesired endmembers can be
quite high, at least in certain spectral bands. We can achieve
better results if we project the observed hyperspectral pixels
onto a custom designed subspace. Let us start with the effects
of the interfering spectral signatures. Note that the columns
of the S matrix are the endmembers after the application of
spectral ltering. We can rearrange columns of S so that the
endmember of interest is the rst column: S = [d U ]. Here
the column vector d is the desired endmember and U is the
matrix consisting of interfering endmembers. To eliminate
the effects of the interfering endmembers, we will apply the
technique proposed in [3]. The main idea is to project the
observed hyperspectral signature onto the a subspace that is
orthogonal to all interfering spectral signatures. This is equiv-
alent to projecting onto the nullspace ofUT . We use a classic
result from linear algebra to write the least squares optimal
projection operator as

P = I − UU †,

where U† denotes the pseudoinverse of U . If U is full-
column rank then U† = (UT U)−1UT . The resulting vector
will only have energy coming from the desired spectral sig-
nature and noise. The application of P effectively removes
contribution from the columns ofU , that is,

Pg = Pdf̃d + Pv,

where f̃d is the element of the vector Hf that corresponds
to the desired endmember. The next step is to minimize the
effect of remaining noise component. Let us denote the oper-
ator that maximizes SNR with qT . Then we have

qT P g = qT Pdf̃d + qT Pv. (3)

Using the results of the well-studied generalized eigenvalue
problem [4], we can show that

qT = κdT ,

where κ is an arbitrary constant. Finally, the combination of
these two projection operators gives the least squares optimal
projection operator we desire, that is,

Q = qT P = κdT P . (4)

For a detailed treatment of the derivation (for single and mul-
tiple spectral signatures of interest) and computation of the
projection operator please refer to [3], [4] and the references
therein.
From Eq. (4) and Eq. (3) we can see that upon appli-

cation of the proposed projection operator we are left with
the conventional superresolution setup. We have a number
of warped, aliased and noisy single-plane abundance maps of
a predetermined endmember, and our goal is to obtain a su-
perresolved single-plane abundance map. This inverse prob-
lem can be solved with any of the superresolution algorithms
proposed in literature. We preferred to use the POCS based
technique detailed in [5].

4. RESULTS

To test the proposed method we require ground truth hy-
perspectral data with a complete set of endmembers and
corresponding fractional abundances. Such ground truth data
is very hard, if possible at all, to obtain. We could pick
spectral signatures from existing endmember libraries, and
synthesize pixels by linearly combining these signatures with
random weights. This is a feasible approach for obtaining
numeric results, but it becomes very cumbersome if we want
to provide visual results with meaningful spatial structure.
To get around this obstacle we used the following approach.
We started with the AVIRIS re ectance data set used in [1].
We rst applied the technique proposed in [6] to extract the
endmembers shown in Figure 1. Then assuming the lin-
ear mixing model, we applied the nonnegative least squares
(NNLS) method summarized in [2] to estimate the fractional
abundance maps for all endmembers. Since the extracted
endmembers can never perfectly match the true endmembers
in the scene [2] the obtained fractional abundance maps can
not represent the data with zero (or negligibly small) error.
To have a scene with perfectly matching endmembers and
abundancemaps, we synthesized a new hyperspectral data set
using the computed fractional abundance maps and the ex-
tracted spectral endmembers under the linear mixing model.
All experiments presented in this section are conducted on
this synthesized data. Note that the validity of our results
is not dependent on the speci c endmember extraction tech-
nique used. For all practical purposes, we could have even
assumed that the endmembers were given. But for the data
set we picked, such predetermined endmembers and corre-
sponding abundance maps were not available at the time we
conducted our experiments.
For the visual results demonstrated in Figure (2) the fourth

endmember shown in Figure 1 is used. The optimal subspace
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Fig. 1. 100th band of the original scene and extracted end-
members

AVIRIS Re ectance Data
Bilinear interpolation Proposed method

Case 1 (Noise free) 21.07 26.71
Case 2 (AWGN σ = 30) 19.77 21.34

Table 1. Numerical results for AVIRIS re ectance data with
and without noise.

projection based superresolutionmethod is compared to bilin-
early interpolating the abundance map obtained by applying
the proposed projection operator on a single low resolution
observation. We assume global translational motion scenario
simulated by capturing spatially shifted windows. The shifted
windows are spatially blurred with a Gaussian blur lter with
unit variance and downsampled by three in both spatial di-
mensions. For spatial noise we experimented with two cases,
namely, noise free (Case 1) and additive white Gaussian noise
(AWGN) with a standard deviation of 30 (Case 2). For the
sake of simplicity we ignored spectral blurring effects.
Numerical results in terms of PSNR are given in Table

(1). We can see that the proposed method clearly outperforms
bilinear interpolation. Visual results presented in Figure (2)
also con rm the improvement seen in PSNR values. The
proposed method effectively suppresses the effects of inter-
fering spectral signatures and noise, and achieves spatial res-
olution enhancement.
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