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ABSTRACT

We present a novel directionally adaptive image interpolation based
on a multiple-direction wavelet transform, called directionlets. The
algorithm uses directionlets to efficiently capture directional features
and to extract edge information along different directions from the
low-resolution image. Then, the high-resolution image is generated
using this information to preserve sharpness of details. Our interpo-
lation algorithm outperforms the state-of-the-art methods in terms of
both numeric and visual quality of the interpolated image.

Index Terms— Interpolation, directional, directionlet, locally
adaptive, wavelet transforms.

1. INTRODUCTION

Image interpolation commonly refers to generating missing image
pixels from the available image information, which is often required
in magnification. The task of magnification is an essential part of
software zooming, focusing regions of interest or printer drivers.
The main challenge is to preserve sharpness of images after reso-
lution enhancement.

The traditional magnification approaches based on bicubic or
spline interpolation [1] are used because of fast computation, easy
implementation and no a priori knowledge assumption. However,
these methods generate blurred high-resolution (HR) images from
their low-resolution (LR) counterparts. Our goal in this paper is to
propose a method that reduces this blurring effect at HR.

Several recent methods improve the visual quality of the inter-
polated images by exploiting the correlation among image pixels
and modeling it using the Markov random field either in the wavelet
[2, 3] or in the pixel domain [4]. Furthermore, in [4], Li and Nguyen
characterize pixels as edge and non-edge and apply different interpo-
lation algorithms to them. Edge-adaptivity and geometric regularity
are also exploited in [5] and [6]. In the latter, the edge direction is
extracted from the LR covariance matrices and is used to estimate
their HR counterparts. However, the computation of the covariance
matrices is limited only to the first four neighbor pixels. As a result,
the reconstructed edges in the interpolated HR image are still blurred
when compared to the edges in the original image.

Another adaptive interpolation method has been proposed in [7].
This method makes use of the multiscale two-dimensional (2-D)
wavelet transform (WT) to capture and characterize edges, which
induce peaks in the wavelet subbands. The characterization involves
estimation of location, magnitude and evolution of the correspond-
ing peaks across wavelet scales determined by the local Lipschitz
regularity of edges [8, 9]. This information is used to estimate the
corresponding wavelet subbands in the HR multiscale decomposi-
tion and to generate the HR image by applying the inverse 2-D WT.
The preserved characterization of edges at HR allows for sharpness
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Fig. 1. A detail of the image Baboon is interpolated using three meth-
ods: simple interpolation using the Haar scaling function, locally adaptive
wavelet-based and directionally adaptive interpolation based on direction-
lets. (a) The original HR image. (b) Interpolation using the Haar filter that
results in blurred details. (c) Wavelet-based interpolation is better, but it fails
to capture efficiently directional features. (d) Our method based on direction-
lets outperforms the previous ones providing both higher numeric and visual
quality and sharper edges in the interpolated images.

and a good visual quality of the reconstructed images. However, no-
tice that the implemented WT is a separable transform constructed
only along the horizontal and vertical directions [8]. Thus, it fails to
characterize efficiently edges along different directions.

Recently, the 2-D WT built along multiple directions (direction-
lets) has been proved [10, 11] to provide sparse representation of im-
ages and to improve the performance of wavelet-based image com-
pression methods. This achievement motivates us to use direction-
lets to improve the characterization of edges in images along differ-
ent directions necessary for the interpolation method in [7]. In our
novel interpolation method, directionlets are constructed adaptively
so that the chosen directions are maximally aligned with locally
dominant directions across image. Because of the alignment, the
transform generates a sparser representation with a reduced energy
in the high-pass wavelet subbands allowing for a more robust estima-
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Fig. 2. Block diagram of the interpolation algorithm proposed in [7].

tion of the edge characteristics. The interpolated images achieve bet-
ter numeric and visual quality than the images obtained by both the
simple interpolation using the Haar filter and the previous wavelet-
based method, as shown in Fig. 1.

The outline of the paper is as follows. We review the interpola-
tion method proposed by Chang et al. [7] and the basic properties of
directionlets in Section 2. In Section 3, we present our interpolation
method, where we first explain how to determine locally dominant
directions and then we give the details of the algorithm. We show
and compare interpolated images to the previous results in Section 4
and, finally, we conclude in Section 5.

2. REVIEW OF BACKGROUND WORK

Here, because of lack of space, we give only a short review of the
basic concepts of the interpolation algorithm in [7] and the construc-
tion of directionlets [10].

2.1. Locally adaptive wavelet-based interpolation

This algorithm is based on the assumption that the LR version is
obtained from the HR original image as a low-pass output of the 3-
band 2-D WT, which is also used in [8]. The main idea is to estimate
the corresponding missing HR low-pass and two high-pass subbands
from the available LR image so that the inverse 3-band 2-D WT
applied to these subbands provides a reconstructed HR image with
preserved sharpness (see Fig. 2).

The process of estimation of the 3 wavelet subbands consists of
two phases: (a) initial estimate and (b) iterative projections onto con-
vex sets (POCS). In the first phase, the initial estimates of all the 3
subbands at HR are computed. The low-pass subband is simply ob-
tained by the bicubic interpolation of the LR image. However, since
the high-pass subbands play an important role in obtaining sharp
reconstructed image, they are generated using a more sophisticated
method. First, a multiscale 3-band 2-D WT is applied to the LR
image with 3 levels of decomposition. Then, extrema of the magni-
tudes of the wavelet coefficients are located in each row and column
of the high-pass subbands to determine the position of sharp varia-
tion points (SVP). The extrema of the magnitudes at different scales
j = 1, . . . , J related to a single SVP indexed by m follow the scal-
ing relation [8]

|W (j)f(xm)| = Km2jαm , (1)

where Km and αm are scaling constant and local Lipschitz regu-
larity factor assigned to the mth SVP, respectively. These two pa-
rameters are estimated from the determined extrema in the wavelet
subbands by linear regression and they are used to extrapolate the
corresponding coefficient values in the HR high-pass subbands. The
other high-pass coefficients that do not correspond to any SVP are
filled by a simple linear interpolation along rows and columns.

In the second phase, the estimated wavelet subbands are iter-
atively projected onto 3 convex sets determined by the following
properties: (a) the 3 wavelet subbands must belong to the subspace
of the wavelet transform, (b) the subsampled low-pass subband must

MΛ
1 1

1– 1
=

s0 0 0=

s1 0 1=
MΛ′

2 2

1– 1
=

Fig. 3. An example of construction of directionlets based on integer lattices
for pair of directions (45◦, −45◦).

be consistent with the LR image and (c) the high-pass subbands must
be consistent with the extracted SVP information. The final estima-
tion of the wavelet subbands is transformed back to the original do-
main using the corresponding inverse 3-band 2-D WT to obtain the
interpolated HR image.

2.2. Directionlets

Directionlets are constructed as basis functions of the skewed ani-
sotropic wavelet transforms [10]. These transforms make use of in-
teger lattices to apply the scaling and wavelet filtering operations
along a pair of directions, not necessarily horizontal or vertical. The
basic operations are purely one-dimensional (1-D) and, thus, direc-
tionlets retain separability and simplicity of the standard 2-D WT.
Notice that, even though the originally proposed transform in [10] is
critically sampled (the filtering operations are followed by subsam-
pling), here we use an oversampled version by removing the sub-
sampling operations. Such a construction results in a shift-invariant
transform with a preserved number of coefficients in each subband,
which makes it easy to handle with rotated image rows and columns
that have different lengths. Fig. 3 shows an example of the construc-
tion of directionlets for pair of directions along (45◦, −45◦).

3. DIRECTIONALLY ADAPTIVE INTERPOLATION

The restriction of having only two directions in the construction of
directionlets implies a need for spatial segmentation of image and
adaptation of the transform directions in each segment. The assigned
pairs of transform directions to each segment across the image do-
main form a directional map. The computation of such a map is
explained in the sequel.

3.1. Directional map

Image is first divided into spatial segments of the size 16 × 16 pix-
els.1 Directionlets are then applied in each segment along each pair
of directions from the set D = {(0◦, 90◦), (0◦, 45◦), (0◦,−45◦),
(90◦, 45◦), (90◦,−45◦)} using the biorthogonal ”9-7” 1-D filter-
bank [12]. Notice that the corresponding lattices for these pairs of
directions do not divide the cubic lattice into more cosets, as ex-
plained in [10] in detail. To avoid a blocking effect in the transform
caused by many small segments, the pixels from the neighbor seg-
ments are used for filtering across the segment borders.

The best pair of directions d∗
n ∈ D is chosen for each segment

indexed by n as
d∗

n = arg min
d∈D

�

i

|W (d)
n,i |2, (2)

1Different segment sizes do not influence significantly the final results.
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Fig. 4. The transform directions are chosen within each spatial segment of
the size 16 × 16 so that the energy in the high-pass subbands is minimized
allowing for the best matching with locally dominant directions in image.
The set of chosen directions form the directional map. (a) The original im-
age Lena. (b) The corresponding directional map. (c) The original image
Baboon. (d) The corresponding directional map.

where the wavelet coefficients W
(d)
n,i are produced by applying di-

rectionlets to the nth segment along the pair d of directions. The
directional map determined by the set {d∗

n} minimizes the energy
in the high-pass subbands and provides the best matching between
transform and locally dominant directions across segments. For the
reason of simplicity of implementation, the pair (0◦, 90◦) is assigned
by default to smooth segments with no apparent dominant direction
(i.e. with low variation of the energy in the high-pass subbands for
d ∈ D). Two examples of directional map are shown in Fig. 4 for
the images Lena and Baboon.

The concept of directional map is used in our interpolation algo-
rithm to improve the extraction of edge information and the estima-
tion of the HR wavelet subbands, as presented next.

3.2. Interpolation algorithm

We propose a novel interpolation algorithm that uses the same con-
cept as the previous method in [7] (revisited also in Section 2.1) with
several modifications caused by implementation of directionlets in-
stead of the 3-band 2-D WT. Similarly, the goal is, first, to estimate
the corresponding wavelet subbands at HR and, then, to apply the
inverse transform to obtain a reconstructed HR image.

The estimation of the wavelet subbands also consists of the two
phases: (a) initial estimate and (b) iterative POCS. In the initial es-
timate, the low-pass subband is bicubic-interpolated from the LR
image, whereas the high-pass subbands are generated from the ex-
tracted SVP information. However, as opposed to the 3-band 2-D
WT, directionlets produce three high-pass subbands per scale de-
noted as HL, LH and HH according to the order of the low-pass
and high-pass filtering in the two transform steps. In case of the
subbands HL and LH, the search for SVP and the extraction of the
SVP parameters are performed along the first and second transform
directions, respectively (instead of the horizontal and vertical direc-
tions in the previous method), whereas, in case of the subband HH,
this process is applied along any of the two directions. Owing to the
properties of the applied transform, the extrema of the magnitudes of

the directionlets coefficients |W (j)
s f(xm)| at scales j = 1, . . . , J ,

for s ∈ {HL, LH, HH}, follow the scaling relation [9]

|W (j)
s f(xm)| = Km2j(αm+1), for s ∈ {HL, LH},

|W (j)
s f(xm)| = Km2j(2αm+1), for s = HH. (3)

By contrast to Chang et al., the SVP parameters, that is, the scaling
constant Km and local Lipschitz regularity factor αm, are estimated
in all the three high-pass subbands by linear regression using (3),
instead of (1).

The initially estimated HR subbands are iteratively refined in
the second phase by projection onto three convex sets. The sets
are defined by similar properties as in the original algorithm, with
a modification for the first set that the subbands must belong to the
corresponding subspace of directionlets, instead of the 3-band WT.

Notice that the two SVP parameters that correspond to the same
location estimated in different high-pass subbands are not indepen-
dent, since they are produced by the same SVP. The relation among
these values can be used to further improve the estimation of the HR
high-pass subbands. However, we do not address this issue here and
leave it for future work.

The estimated HR subbands are transformed back to the origi-
nal domain using inverse directionlets and the computed directional
map. Notice also that the same transform is used in both the com-
putation of directional map (as explained in Section 3.1) and the ini-
tial estimate of the high-pass subbands and, thus, this transform can
be applied only once. This fact is exploited to avoid adding up the
overhead computational complexity on top of the complexity of the
initial interpolation algorithm. The entire interpolation algorithm is
summarized next.

Step 1: Directional map

∗ Apply directionlets to each 16×16 block using the pairs of trans-
form directions from the set D,

∗ Compute optimal pair of directions using (2),

Step 2: Initial estimate

∗ Compute the low-pass subband at HR using bicubic interpolation,

∗ Determine the SVP in the high-pass subbands using the transform
along the directions computed in Step 1; estimate the SVP parame-
ters; compute the corresponding high-pass subbands,

Step 3: Iterative POCS (repeat this step 5 times)

∗ Project all the subbands onto the directionlets subspace using a
pair of inverse and forward transform,

∗ Keep the subsampled version of the low-pass subband consistent
with the LR image,

∗ Keep the SVP parameters in the high-pass subbands consistent
with the initial edge estimation,

Step 4: Reconstruction

∗ Apply one step of inverse directionlets on the estimated subbands
using the directional map computed in Step 1.

4. EXPERIMENTAL RESULTS

We compare the performance of our method to the performance of
both the simple interpolation using the Haar scaling function and the
previous locally adaptive wavelet-based method from [7] applied to
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(a) (b) PSNR=31.56dB

(c) PSNR=34.68dB (d) PSNR=35.43dB

Fig. 5. The image Lena is interpolated from the size 256 × 256 to the size
512×512 pixels using the three methods: simple interpolation with the Haar
filter, wavelet-based and interpolation based on directionlets. (a) The LR
image. (b) Interpolation using the Haar scaling function (PSNR=31.56dB).
(c) Locally adaptive wavelet-based interpolation [7] (PSNR=34.68dB). (d)
Interpolation based on directionlets (PSNR=35.43dB).

two test images, Lena and Baboon. To be able to compare the in-
terpolated images to the reference ones in terms of peak signal-to-
noise-ratio (PSNR), we first low-pass filter and subsample the orig-
inal images from HR to LR and, then, we apply the interpolation
algorithms to reconstruct the images back at HR. Since the original
source code for the method in [7] is not available, we have rewritten
it and have obtained PSNRs that are not exactly equal to the results
shown in the original paper, but approximately close.
The LR 256 × 256 image Lena shown in Fig. 5(a) is interpolated
to the size 512 × 512 pixels using the simple interpolation with
the Haar filter, wavelet-based and the method based on directionlets
and the reconstructed images are shown in Fig. 5(b-d). In both the
wavelet-based and directionlets-based methods, the iterative POCS
converges quickly and the number of iteration steps is equal to 5.
The obtained numeric results are 31.56dB, 34.68dB and 35.43dB,
respectively. Similarly, the numeric results for the image Baboon are
23.35dB, 23.61dB and 24.11dB for the three methods, as shown in
Fig. 6. Notice that our interpolation algorithm significantly outper-
forms the other ones for both test images. Moreover, the visual qual-
ity of the interpolated images is evidently better because of sharper
edges and texture. To emphasize this gain, the interpolated versions
of the nose and mouth of the baboon are zoomed in for all the three
methods and shown in Fig. 1.

5. CONCLUSIONS

We have proposed a novel image interpolation algorithm obtained by
implementation of directionlets in the previously proposed locally
adaptive wavelet-based method. The algorithm adapts the transform
directions to dominant directions across the image domain and suc-
cessfully captures oriented features. Moreover, it extracts the in-
formation about these features (location, amplitude and degree of

(a) (b) PSNR=23.35dB

(c) PSNR=23.61dB (d) PSNR=24.11dB

Fig. 6. The image Baboon is interpolated using the same three
methods. (a) The LR image. (b) Interpolation using the Haar scal-
ing function (PSNR=23.35dB). (c) Locally adaptive wavelet-based inter-
polation [7] (PSNR=23.61dB). (d) Interpolation based on directionlets
(PSNR=24.11dB).

regularity) from the low-resolution image and uses these parameters
to generate a high-resolution version with preserved sharpness. Our
method outperforms the previous methods in terms of both numeric
and visual quality of reconstructed images. The performance of the
method can be even further improved by exploiting the relation of
the extracted parameters across the wavelet subbands, which is left
for future work.
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