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ABSTRACT

It is well known that high-dimensional nearest-neighbor retrieval is
very expensive. Many signal processing methods suffer from this
computing cost. Dramatic performance gains can be obtained by
using approximate search, such as the popular Locality-Sensitive
Hashing. This paper improves LSH by performing an on-line selec-
tion of the most appropriate hash functions from a pool of functions.
An additional improvement originates from the use of E8 lattices for
geometric hashing instead of one-dimensional random projections.
A performance study based on state-of-the-art high-dimensional de-
scriptors computed on real images shows that our improvements to
LSH greatly reduce the search complexity for a given level of accu-
racy.

Index Terms— Search methods, Image databases, Quantization,
Database searching, Information retrieval.

1. INTRODUCTION

Nearest neighbor search is inherently expensive due to the curse of
dimensionality [1, 2]. This operation is required in many applica-
tions. In quantization, for example, it is used when assigning vectors
to unstructured codebooks. In image retrieval or object recognition,
the numerous descriptors of an image have to be matched with those
of a descriptor dataset (direct matching) or a codebook (in bag-of-
features approaches). Approximate nearest-neighbor (ANN) algo-
rithms have been shown to be an interesting way of dramatically
improving the search speed, and are often a necessity. Several ad
hoc approaches have been proposed for vector quantization (see [3]
for references), when finding the exact nearest neighbor is not ex-
actly necessary, as long as the reconstruction error is limited. More
specific ANN approaches performing content-based image retrieval
using local descriptors have been proposed [4, 5]. Overall, one of
the most popular approximate nearest neighbor search algorithms is
the Euclidean Locality-Sensitive Hashing (LSH) [6, 7]. LSH has
been successfully used for local descriptors [8] and 3D object index-
ing [7, 9].

In this paper, we build upon LSH to further improve its perfor-
mance. Our main contribution is the following. First, we define a
criterion that measures the expected accuracy of a given hash func-
tion with respect to the queries. At query time, this allows us to
select on-line from a pool of hash functions the most appropriate
ones. This improves the accuracy of the search. As in [10], a lattice
replaces random projections, but the E8 lattice [11, 12] is preferred
over the Leech lattice as it is much cheaper to compute. Overall, our
improvements turn the LSH into a query-adaptive locality sensitive
lattice-based hashing that we call QA-LSH. We demonstrate the im-
provement over LSH in the context of searching high dimensional
vectors, namely the state-of-the-art 128-dimensional SIFT [4] local
descriptors, obtained from a set of images.

2. BACKGROUND

This section presents the background for LSH and E8 lattices re-
quired to understand the remainder of this paper.

2.1. Locality-Sensitive Hashing

Indexing d-dimensional descriptors with the Euclidean version of
LSH [7] proceeds as follows. The n vectors of the codebook are
first projected onto a limited set of m directions characterized by the
d-dimensional vectors (ai)1≤i≤m of norm 1. Each direction ai is
randomly drawn from an isotropic random generator.

For a given vector x and for each direction i represented by its
vector ai, a real-valued hash function hr

j (x) is defined as

hr
i (x) =

〈x|ai〉 − bi

w
, (1)

where w is the quantization step chosen according to the data
(see [7]), the offset bi is uniformly generated in the interval [0, w)
and where the inner product 〈x|ai〉 is the projected value of the vec-
tor onto the direction i. The hash function hr

i produces a real value
which is subsequently rounded to an integer, as

hi(x) = �hr
i (x)� . (2)

The family of hash functions H = {hi}1≤i≤m is adapted to the
case where the distance between vectors is Euclidean. If two vectors
x and y are such that hi(x) = hi(y), y is close to x with a good
probability. Conversely, if x and y are far from each other, then
hi(x) �= hi(y) with a high probability.

A single hash function ofH is not discriminative enough by itself,
because only one direction among d is used to partition the vectors.
Therefore a second level of hash functions, based on the familyH, is
subsequently defined. This level is formed by a family of l functions
constructed by concatenating several functions fromH. Hence, each
function gi of this family is defined as

gj = (hj,1, . . . , hj,k), (3)

where the functions hj,i are randomly chosen from the setH of hash
functions. At this point, a vector x is indexed by a set of l vector of
integers gj(x) = (hj,1(x), · · · , hj,k(x)) ∈ Z

k.
The next step stores the vector identifier within the cell associated

with this vector value gj(x). Since most of the cells are empty, a
universal hash function u1 is used to obtain from the vector gj(x)
an integer lying in the interval [0, c). The quantity c should be high
enough to avoid, with high probability, the collision of two distinct
integer vectors. For a vector y = y1, · · · , yk, the function u1 is
defined [7] as

u1(y) =

  
kX

i=1

r′iai

!
mod P

!
mod c, (4)
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where P is a prime (e.g., P = 232 − 5) and r′i are random integers.
The integer u1(gj(x)) indexes a bucket in the hash table associated
with the hash function gj .

To further reduce the collision probability (e.g., if c is chosen
small to reduce the memory usage), a second hash function u2 simi-
lar to u1 can be used (see [7]):

u2(y) =

 
kX

i=1

r′′i ai

!
mod P, (5)

where the r′′i are random integers different from the r′i. In that case,
the integer u2(gj(x)) is stored together with the vector identifiers in
the bucket indexed by u1(gj(x)).

At run time, the query vector q is treated in the same way as the
database elements, i.e., it is projected onto each of the l random lines,
producing a set of l integer vectors {g1(q), · · · , , gl(q)}. The algo-
rithm keeps track of the vector identifiers encountered in the l buck-
ets associated with the query, returning a short-list of vector identi-
fiers. The nearest neighbor is found by performing an exact search
within this short-list. For big datasets, this last step is the bottleneck
in the algorithm.

As the benefits of using LSH are important for large datasets only,
its efficiency will be measured by the number of vectors in the short-
list for which we have to perform an exact search, i.e., the efficiency
is assumed to be a linear function of the short-list length. Note,
however, that in practice we have to keep in mind that the first steps
of the algorithm may be slow if the parameters are set too large, in
particular the number of hash functions l.

2.2. The E8 lattice

Lattices have been widely studied in mathematics and physics, but
some lattices have also been shown to be of high interest in quantiza-
tion [3, 11]. For a uniform distribution, this gives better performance
than any scalar quantizer [3]. Moreover, in contrast to unstructured
sets of points, finding the nearest lattice point of a vector can be per-
formed with an algebraic method [13]. This problem is referred to
as decoding, due to the application in compression.

A lattice is a discrete subset of R
d defined by a set of vectors of

the form

{x = u1a1 + · · ·+ udad|u1, · · · , ud ∈ Z} (6)

where the vectors a1, · · · , ad are some linearly independent vectors

of R
d′

, d′ ≤ d. In this paper, we will only consider lattices such
that d′ = d. Hence, denoting by A = [a1 · · · ad] the matrix whose
columns are the vectors aj , the lattice is the set of vectors spanned by
Au when u ∈ Z

d. With this notation a point of a lattice is uniquely
identified by the integer vector u. Note that taking the diagonal ma-
trix for A amounts to defining a regular grid of hypercubes.

In this section, we will on focus the hyper-diamond lattice E8

which offers the best quantization performance for uniform 8-
dimension vectors. As Conway and Sloane [12] point out, “It is
worth drawing attention to the remarkably low value of the mean-
squared error for E8”. Although the Leech lattice offers still slightly
better quantization performance, our choice is motivated by the fact
that the Leech lattice decoding requires significantly more opera-
tions, as for most high-dimensional lattices [13].

The E8 lattice can be defined based on another 8-dimensional lat-
tice, the D8 lattice, which is the set of point of Z

8 whose sum is even,
e.g. (1, 1, 1, 1, 1, 1, 1, 1) ∈ D8 whereas (0, 1, 1, 1, 1, 1, 1, 1) /∈ D8.

Denoting by 1
2

the vector (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), the
E8 lattice is defined as the union

E8 = D8 ∪ (D8 +
1

2
), (7)

where D8 + 1
2

is the set of points of D8 translated by the vector 1
2

,

in particular 1
2
∈ D8 + 1

2
.

The decoding of a given vector x for the lattice E8 can be done
by performing the decoding for both the lattice D8 and the lattice
D8 + 1

2
. The decoding of x for D8 proceeds as follows [12]:

• the nearest integer vector of x is found by rounding the com-
ponents of x to the nearest integers;

• if the sum of this integer vector is even, then this vector is the
nearest point of the lattice D8;

• otherwise the second nearest integer vector is searched. This
is done by searching for the component of x which is the far-
thest from an integer. This value is then rounded in the “bad
way” [12] instead of the best rounding.

For example, if x = (1.2, 1.2, 1.2, 1.2, 1.2, 1.1, 1.8, 1.4), then
the closest integer vector is (1, 1, 1, 1, 1, 1, 2, 1). Since its sum
is odd, it does not belong to D8. Hence, x is decoded as
(1, 1, 1, 1, 1, 1, 2, 2), since 1.4 is the component to be rounded in
the bad way.

The decoding for D8 + 1
2

is equivalent to decode the vector

x − 1
2

for the D8 lattice and to add 1
2

to the resulting vector.

E.g., x − 1
2

= (0.7, 0.7, 0.7, 0.7, 0.7, 0.6, 1.3, 0.9) is decoded as
(1, 1, 1, 1, 1, 1, 1, 1), giving (1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5) for
the lattice D8 + 1

2
.

The final decoding step for E8 consists in comparing the distance
between x and the closest vectors obtained from D8 and D8 + 1

2
and

in retaining the closest one. Hence, in our example, x is decoded as
E8(x) = (1, 1, 1, 1, 1, 1, 2, 2). The overall decoding requires 104
operations [14], which is much lower than the 3595 floating point
operations needed for the Leech lattice [15]. Note that more effi-
cient algorithms exist for the E8 lattice [14] (about 20 operations).
The algorithm of Conway and Sloane has been chosen for ease of
presentation. Note also that there exists a suboptimal decoding algo-
rithm for the Leech lattice that requires 519 operations [16].

3. QUERY-ADAPTIVE LSH (QA-LSH)

In this section, we first show that the probability of a given hash
function returning the correct nearest neighbor is strongly correlated
with a criterion that can be efficently computed without parsing the
bucket. By exploiting this criterion and by using E8 lattices as hash
functions instead of random projections, we define an enhanced vari-
ation of the LSH, referred to as QA-LSH, which outperforms the
original version in terms of the trade-off between retrieval accuracy
and complexity.

3.1. Hash function relevance criterion

Let us consider the toy example in Fig. 1. The area under the curve
corresponds to the probability P (hi(x) �= hi(NN(x))) that a pro-
jected query descriptor hr

i (x) is not quantized in the same bucket as
its projected nearest neighbor hr

i (NN(x)). For the sake of illustra-
tion, we assume here that the distance between the projected query
descriptor and its projected nearest neighbor is Gaussian.

The figure illustrates the intuition that the position of the pro-
jection of x within the interval of size w has a strong impact on
the probability that two vectors which are close are hashed in the
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ai x bi

ai x bi
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Fig. 1. Toy example: probability that both a descriptor and its noisy
version are quantized in the same bucket under a Gaussian noise
assumption.

same bucket. This position can be defined as the absolute value
|hr

i (x)− (hi(x) + 0.5)|, which lies between 0 (the projected value
is centered) and 0.5. This quantity gives some information on the
relevance of the hash function used: lower values are better.

For a given query x, this information is used to define a relevance
criterion λ(gj) for the hash functions gj . Let us consider the real and
integer hash functions hr

j,i and hj,i associated with gj . The criterion
is defined as

λ(gj) =

sX
k

(hr
j,i(x)− (hj,i(x) + 0.5))2. (8)

Under the assumption that the directions aj,i associated with the
hash functions hj,i form an orthonormal basis1 of the k-dimensional
subspace onto which the dataset vectors are projected, the quantity
λ(gj) corresponds to the distance of the projected vector from the
center of the k-dimensional Voronoi cell. Note that 0 ≤ λ(gj) ≤√

k/2.
Fig. 2 shows the interest of the proposed criterion to measure the

relevance of the different hash functions. It was generated using a set
of SIFT descriptors randomly extracted from a large set of images.
Given a hash function gj , it shows the probability that a given SIFT
descriptor is hashed in the same bucket as its nearest vector in the
dataset. For a given query, this suggests choosing the hash functions
gj(x) that provide the best expected relevance. It should be com-
pared with Fig. 3, which gives the probability distribution function
(PDF) of the proposed criterion on the same dataset. From these fig-
ures one can deduce that most of the hash functions used to retrieve
the nearest neighbor have a low relevance.

3.2. Lattices as hash functions

The space partition resulting from the random projections is im-
proved by using quantizers which are better suited to the Euclidean
distance. Lattices are a natural choice, as they offer very good quan-
tization properties for the mean square error dissimilarity measure
used in Euclidean spaces. This has recently motivated the use of
Leech lattices to perform the geometric hashing in LSH [10]. How-
ever, as explained in subsection 2.2, the interest of this Lattice in
this context is mainly theoretical, as its decoding has a high compu-
tational cost. Therefore, this lattice is of interest only if the dataset

1Note that for d high enough the inner product between two isotropically
drawn unitary vectors x and y is fairly approximated by a normal law of zero-
mean and variance 1/d. Hence, for d = 128, two directions ai1 and ai2 are
almost orthogonal with very high probability.
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Fig. 2. Empirical probability that a SIFT descriptor (of dimension
128) is hashed into the same bucket as its nearest neighbor in a vector
set comprising 50 000 elements ; w = 0.2, k = 10.

to be searched is extremely large, otherwise the lattice computation
step is the bottleneck in the search.

We propose using the E8 lattice instead, which offers excellent
quantization properties together with a low decoding cost, as shown
in subsection 2.2. For each hash function we randomly draw 8 com-
ponents of a given input vector x, producing a 8-dimensional vector
xi,8. The hash functions of Eqn. 2 are then replaced by

hi(x) = E8

„
xi,8 − bi

w

«
, (9)

where E8(·) represents the decoding function associated with the lat-
tice E8, bi is a 8-dimensional random offset and w is a normalization
factor defining the lattice cell size via a homothetic transformation.
In contrast to random projections, hi(x) is an integer vector, not a
scalar value. The construction of the functions gj in Eqn. 3 is still
valid, but here the gj are the concatenation of the integer vectors hi.

The square of the relevance criterion λ(gj) of Eqn. 8 is easily de-
rived, by summing the square distances between the different vectors
hj,i and their corresponding lattice points. Note that this quantity is
obtained as a by-product of the E8 lattice decoding algorithm.

3.3. The algorithm QA-LSH

The core ideas behind our QA-LSH algorithm are 1) using E8 lat-
tices as hash functions and 2) selecting the most appropriate hash
functions using the proposed relevance criterion.

For this purpose, at query time we select the l′ hash functions
with the highest relevance for the query x, i.e. the ones minimiz-
ing λ(gj(x)), instead of using all the hash functions gj . Only the
buckets associated with these l′ hash functions will be parsed and
the corresponding vectors retrieved. Therefore, quite a large set of l
hash functions {gi} can be used. The main limitation is the amount
of memory required to store the hash tables. The selection of the
best hash functions is not a time consuming process, as the rele-
vance criterion is obtained as a by-product of the lattice decoding.
For a reasonable number of hash functions, the bottleneck of the al-
gorithm remains the last step of the “exact” LSH algorithm, i.e., the
search for the exact nearest neighbors within the short-list obtained
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by parsing the buckets. Using E8 lattices instead of random pro-
jections only impacts the hash function calculation: the rest of the
algorithm remains identical.

4. SIMULATION: QA-LSH vs LSH

This simulation compares our QA-LSH algorithm with standard
E2LSH [10] as described in Subsection 2.1. For this purpose, we
measure the proportion of 128-dimensional SIFT descriptors (ran-
domly extracted from a large set of images) correctly assigned to
their exact closest element in a descriptor set composed of k =
50 000 vectors. The objective is to measure the percentage of dataset
elements for which an exact search has to be performed to obtain a
given level of accuracy. This measure accurately reflects the compu-
tational cost for very large datasets, where the most time-consuming
task is the exact search within the subset returned by the algorithm.

Fig. 4 shows that our new approach clearly outperforms the orig-
inal LSH in terms of the trade-off between accuracy and efficiency
measured by the number of vectors returned in the short-list. Note
that for both algorithms, only the results associated with the sets of
parameters (w and k) that perform well have been displayed.

5. CONCLUSION

We have presented an improved version of the popular approximate
nearest neighbor search algorithm LSH. Our version uses the lattice
structure and on-line selection of the quantization cells, leading to a
better compromise between speed and accuracy.
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