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ABSTRACT
In this paper we analyze the problem of image databases cat-
egorization using a statistical generative model. Our model
is based on the multinomial generalized Dirichlet distribution
recently introduced to model discrete data. The model inte-
grates also the spatial information with color histograms. We
designed experiments to show the merits of our model.

Index Terms— Generalized Dirichlet distribution, multi-
nomial, image databases, prior distribution, mixture models.

1. INTRODUCTION

Images categorization is the process of grouping images into
different classes. With the amount of digital information grow-
ing rapidly, the need for efficient automatic images catego-
rization techniques has increased. Images categorization can
be used for content-based images retrieval or browsing. A va-
riety of techniques have been proposed to retrieve this digital
content [1]. Although different, all these techniques agree on
the fact that an efficient categorization scheme plays an im-
portant role. Color histograms are widely used as features
vectors for images summarization and retrieval [2] and are
used in different systems [1]. This can be explained by the
fact that histograms provide a stable object recognition in the
presence of occlusions and over views change [2]. However,
histograms do not include any spatial information which is an
important issue in human visual perception. Indeed, images
with different appearance may have similar histograms which
is a critical problem in large image databases. Different ap-
proaches have been proposed to integrate spatial information
with color histograms [3, 4]. In this paper, we propose a gen-
erative model to take into account at the same time both the
color and spatial information. Our model is based on the gen-
eralized Dirichlet distribution taken as a prior to the multino-
mial. Our generative model is presented in the next section. In
section 3, we estimate the parameters of this model. Section
4, is devoted to experimental results.
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2. THE GENERATIVE MODEL

Suppose that we have N labeled images Ii, i = 1, . . . , N
classified in R classes and that the number of labeled images
in each class r is equal to nr (

∑R
r=1 nr = N ). By associating

a distribution and a weight p(r) to each class in the training
set, we can suppose that each image Ii is generated by a mix-
ture of R distributions with parameters �π = (�π1, . . . , �πR)

p(Ii|�π) =
R∑

r=1

p(r)p(Ii|�πr) (1)

The problem now is the determination of p(Ii|�πr). For this,
let us introduce some notations. AnL×K image Ii is consid-
ered to be a set of pixels {Xilk

, l = 1, . . . , L; k = 1, . . . , K},
where Xilk

is the pixel in position (l, k) of image Ii. The
colors in Ii are quantized into C colors c1, . . . , cC . The dis-
tribution p(Ii|�πr) can be described in terms of the features
of the image. In our case, the features are the pixels. In or-
der to introduce the spatial information, the probability of a
pixel should be conditioned on its neighborhood. By taking
the neighborhood consisting of the pixels at a distance d ∈
D = {d1, . . . .dD} measured using the L∞ norm, p(Ii|�πr)
will be given by

p(Ii|�πr) =
D∏

d=1

L∏
l=1

K∏
k=1

p(Xilk
|�πr; Xil′k′ , d) (2)

where |(l, k) − (l′, k′)| = max{|l − l′|, |k − k′|} = d. Note
that Eq. 2 will represent the classic image histogram, if we
suppose that each pixel Xilk

is independent of its neighbor-
hood, which is actually the standard naive Bayes assumption
[5]. According to Eq. 2 the parameters of an individual mix-
ture component are a multinomial distribution over the C×C
possible color pairs and can be written as πct1 ,ct2 ,d|r, where

t1, t2 = 1, . . . , C and πct1 ,ct2 ,d|r = p

(
Xilk

= ct1 , Xil′k′ =

ct2

∣∣|(l, k)−(l′, k′)| = d

)
, l, l′ = 1, . . . , L, k, k′ = 1, . . . , K,

which is the probability that a pixel of color ct1 has at a dis-
tance d a pixel of color ct2 . Then, Eq. 2 could be written as a
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multinomial distribution

p(Ii|�πr) =
D∏

d=1

C∏
ct1=1

C∏
ct2=1

π
fct1 ,ct2 ,d

ct1 ,ct2 ,d|r (3)

fct1 ,ct2 ,d ≡ Card
{
(Xilk

, Xil′k′ ) =(ct1 , ct2)
∣∣|(l, k)−(l′, k′)| =

d
}
and Card{} refers to the number of elements of a set.

Learning our model consists of estimating the parameters �πr

using the nr labeled images in class r. Having all the param-
eters describing Eq. 1, we can assign a given test image It to
a particular mixture component in Eq. 1 by using the Bayes’
rule: It �−→ arg maxr p(r)p(It|�πr), where p(r) = nr

N [6].

3. PARAMETERS ESTIMATION

3.1. Prior Distributions

By associating a C2-dimensional vector of frequencies �fi,d =
(fc1,c1,d = fi1, . . . , fc1,cC ,d = fic1×cC

, . . . , fcC ,cC ,d = fiC2)
to each image Ii for each distance d, the parameters can be
estimated as the following:

πct1 ,ct2 ,d|r =
fct1 ,ct2 ,d∑C

ct1=1

∑C
ct2=1 fct1 ,ct2 ,d

=
fict1×ct2∑C2

c=1 fic

(4)

which gives poor estimate [7]. A possible solution to over-
come this problem is to assign a single Dirichlet or a Dirichlet
mixture prior to the parameter vector �πr to moderate the ex-
treme estimates given by Eq. 6 [7]. The Dirichlet distribution
with C2 positive parameters �α = (α1, . . . , αC2) is defined by

p(�πr|�α) =
Γ(

∑C2

c=1 αc)∏C2

c=1 Γ(αc)

C2∏
c=1

παc−1
c (5)

where (πc1,c1,d|r = π1, . . . , πc1,cC ,d|r = πc, . . . , πcC ,c1,d|r =
πcC×c1 , . . . , πcC ,cC ,d|r = πC2). Using the Dirichlet as a
prior, it is easy to show that we obtain the following estimate
[7]:

πct1 ,ct2 ,d|r =
fict1×ct2

+ αct1×ct2∑C
ct1=1

∑C
ct2=1(fict1×ct2

+ αct1×ct2
)

(6)

In spite of its flexibility and the fact that it is conjugate to
the multinomial the Dirichlet has a very restrictive covariance
matrix [8]. Another restriction of the Dirichlet distribution
is that the variables with the same mean must have the same
variance. All these disadvantages can be handled by using the
generalized Dirichlet distribution. The generalized Dirichlet
pdf in our case is defined by [9]

p(�πr|�ξ) =
C2−1∏
c=1

Γ(αc + βc)
Γ(αc)Γ(βc)

παc−1
c (1 −

c∑
l=1

πc)γc

where �ξ = (α1, β1, . . . , αC2−1, βC2−1) ,αc > 0, βc > 0,
γc = βc − αc+1 − βc+1 for c = 1 . . . C2 − 2 and γC2−1 =

βC2−1 − 1. The generalized Dirichlet distribution is reduced
to a Dirichlet distribution with (α1, . . . , αC2−1, αC2 = βC2−1)
when βc = αc+1 + βc+1. Thus, the generalized Dirichlet
includes the Dirichlet as a special case. Comparing to the
Dirichlet, the generalized Dirichlet has C2 − 2 extra param-
eters which is a very important advantage. Indeed, as the
Dirichlet has C2 parameters, when constructing a Dirichlet
prior and if the mean probabilities of the variables have been
fixed, it remains only one degree of freedom (by fixing the
value of

∑C2

c=1 αc) to adjust the distribution. For the general-
ized Dirichlet, however, it remains C2−1 degrees of freedom
which makes it more flexible for several applications [9]. We
can show that the mean of the generalized Dirichlet distribu-
tion is [9, 10]

E(πc) =
αc

αc + βc

c−1∏
k=1

βk

αk + βk
(7)

In addition to these properties, we can easily show that the
generalized Dirichlet is conjugate to the multinomial distri-
bution and using it as a prior gives us the following estimate

πct1 ,ct2 ,d|r =
αct1×ct2

+ fict1×ct2

αct1×ct2
+ βct1×ct2

+ nct1×ct2

×
ct1×ct2−1∏

l=1

βl + nl+1

αl + βl + nl
(8)

where nct1×ct2
= fct1 ,ct2 ,d . . .+fcC ,cC ,d. When βl = αl+1+

βl+1, it is straightforward to verify that this equation is re-
duced to Eq. 6.

3.2. Estimation

By using the generalized Dirichlet as a prior, we suppose ac-
tually that the vectors Fr = {�fi,d, i = 1, . . . , nr} in each
training set follow a multinomial generalized Dirichlet as fol-
lows

p(�fi,d|�ξ) =
C2−1∏
c=1

Γ(αc + βc)
Γ(αc)Γ(βc)

C2−1∏
c=1

Γ(α
′
c)Γ(β

′
c)

Γ(α′
c + β′

c)

where α
′
c = αc + fic and β

′
c = βc + fic+1 + . . . + fiC2 for

c = 1, . . . , C2 − 1. The log-likelihood corresponding to this
distribution is given by

L(F|�ξ) =
nr∑
i=1

C2−1∑
c=1

log
(

Γ(αc + βc)
Γ(αc)Γ(βc)

Γ(α
′
c)Γ(β

′
c)

Γ(α′
c + β′

c)

)
(9)

The estimation of the parameters is based on the maximiza-
tion of this function. For this goal, we have used a Newton-
Raphson method based on the computation of the first and
second derivatives.

∂L(F|�ξ)
∂αc

=
nr∑
i=1

(
Ψ(αc+βc)−Ψ(αc)+Ψ(α

′
c)−Ψ(α

′
c+β

′
c)

)
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∂L(F|�ξ)
∂βc

=
nr∑
i=1

(
Ψ(αc+βc)−Ψ(βc)+Ψ(β

′
c)−Ψ(α

′
c+β

′
c)

)

By computing the second and mixed derivatives we obtain

∂2L(F|�ξ)
∂αc1∂αc2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑nr
i=1

(
Ψ

′
(αc + βc) − Ψ

′
(αc)

+Ψ
′
(α

′
c) − Ψ

′
(α

′
c + β

′
c)

)
if c1 = c2 = c

0 otherwise
(10)

∂2L(F|�ξ)
∂βc1∂βc2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑nr
i=1

(
Ψ

′
(αc + βc) − Ψ

′
(βc)

+Ψ
′
(β

′
c) − Ψ

′
(α

′
c + β

′
c)

)
if c1 = c2 = c

0 otherwise
(11)

∂2L(F|�ξ)
∂βc1∂αc2

=
∂2L(F|�ξ)
∂αc1∂βc2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑nr
i=1

(
Ψ

′
(αc + βc)

−Ψ
′
(α

′
c + β

′
c)

)
if c1 = c2 = c

0 otherwise
(12)

where Ψ and Ψ
′
are the digamma and trigamma functions.

Then, the Hessian matrix has a block-diagonal structure

H(�ξ) = block-diag
{
H1(α1, β1), . . . , HC2(αC2 , βC2)

}
(13)

where

Hc(αc, βc) =

(
∂2L(F|�ξ)

∂2αc

∂2L(F|�ξ)
∂αc∂βc

∂2L(F|�ξ)
∂βc∂αc

∂2L(F|�ξ)
∂2βc

)
(14)

Given a set of initial estimates, Newton-Raphson method can
now be used to estimate the parameters:

�ξ(t) = �ξ(t−1) − H(�ξ(t−1))−1 ∂L(F|�ξ)
∂�ξ(t−1)

(15)

where

H(�ξ)−1 = block-diag
{
H1(α1, β1)−1, . . . , Hv(αC2 , βC2)−1

}
(16)

4. EXPERIMENTAL RESULTS: SPATIAL COLOR
IMAGE DATABASES SUMMARIZATION

For our experiments, we used a database containing 45100
images. This database contains 10 homogeneous classes (see
Figure 1). We divided the database on two sets. A data set
containing 22550 images used for training. The remaining
images were used for testing. The repartition of the different
classes in the training and test sets is given in table 1. We con-
sidered the RGB space with color quantization into 512 colors
(8 × 8 × 8) and the set of distances D = {1, 3, 5, 7, 9, 11}.
Besides, we have considered only probabilities of pixels hav-
ing same colors in order to reduce zero frequencies, which

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Sample images from each group. (a) Class1, (b)
Class2, (c) Class3, (d) Class4, (e) Class5, (f) Class6, (g)
Class7, (h) Class8, (i) Class9, (j) Class10,

Table 1. Repartition of the different classes in the training
and test sets.

class Training set Testing set
Class1 2250 2250
Class2 2500 2500
Class3 3000 3000
Class4 1900 1900
Class5 2000 2000
Class6 2100 2100
Class7 2250 2250
Class8 2200 2200
Class9 2050 2050
Class10 2300 2300

is a common approach and used, for instance, in the case of
the autocorrelogram proposed by Huang et al. [4]. The accu-
racy classification produced by our classifier was measured by
counting the number of misclassified images, yielding a con-
fusion matrix. In this confusion matrix, the cell (i, j) repre-
sents the number of images from category i which are classi-
fied as category j. The number of images misclassified when
we used generalized Dirichlet as a prior, was 2189, which rep-
resents an accuracy of 90.29 percent (See Table 2). Table 3
represents the confusion matrix when we used a Dirichlet
(3711 misclassified images which represents an accuracy of
83.54 percent). Table 4 shows the confusion matrix when we
use only the frequencies. In this case, the accuracy was 80.35
percent (4430 misclassified images). We have also tested the

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 1961 89 21 45 28 22 14 27 20 23
C2 32 2168 21 89 17 33 45 37 22 36
C3 18 71 2632 23 37 22 28 31 84 54
C4 51 35 14 1700 26 12 15 18 19 10
C5 29 17 21 52 1775 13 14 18 37 24
C6 13 25 7 10 10 1925 31 49 5 25
C7 17 55 16 19 20 23 2033 27 6 34
C8 23 36 4 8 12 25 17 2047 8 20
C9 23 7 3 15 25 2 4 3 1949 19
C10 9 21 9 5 13 12 10 32 18 2171

Table 2. Confusion matrix for image classification using
multinomial generalized Dirichlet.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 1739 123 43 81 49 41 29 53 41 51
C2 49 1918 49 145 47 51 86 62 39 54
C3 37 118 2347 48 67 37 56 60 135 95
C4 89 67 26 1575 37 17 21 23 28 17
C5 48 29 36 80 1674 18 19 21 46 29
C6 17 39 13 17 19 1822 48 66 16 43
C7 30 79 23 31 29 36 1927 45 8 42
C8 41 57 7 13 23 46 29 1932 15 37
C9 44 11 7 27 46 5 9 15 1859 27
C10 20 43 21 12 25 25 21 59 28 2046

Table 3. Confusion matrix for image classification using
multinomial Dirichlet.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 1670 131 49 86 55 44 36 61 53 65
C2 53 1858 54 169 51 58 86 67 47 57
C3 43 132 2247 53 76 45 67 72 153 112
C4 98 72 29 1515 45 23 25 29 37 27
C5 51 31 39 89 1624 21 29 25 57 34
C6 26 44 23 25 24 1742 61 78 23 54
C7 37 91 36 42 41 49 1819 63 16 56
C8 44 61 12 17 28 52 35 1877 23 51
C9 56 14 11 31 46 13 14 18 1812 35
C10 27 51 27 17 36 37 29 71 49 1956

Table 4. Confusion matrix for image classification using
multinomials.

representation of the image colors in the HSV space and we
did not remark much changes in the results. From the results,
we can conclude that the multinomial Dirichlet and the multi-
nomial Generalized Dirichlet perform better than the multi-
nomial. This can be explained by the sparseness problem;
i.e the zero frequency problem [11]. Indeed, many frequen-
cies are actually zero or have very small probabilities. Then,
when the multinomial is used for modeling, prediction and
classification, a large number of observations will be judged
to be impossible based on the training data. The introduction
of the Dirichlet and the generalized Dirichlet as priors can be
viewed as smoothing technique to deal with this problem.

5. CONCLUSION

We have proposed, discussed and evaluated a generative model
to improve the color histogram by the spatial information.
This model is based on the introduction of the generalized
Dirichlet as a prior to multinomial distributions. The recently
proposed multinomial Dirichlet has turned out to be a special
case. We have also addressed the problem of parameters esti-
mation. The proposed model is powerful and flexible enough
to be adapted to a broad variety of applications where discrete
data plays an important role such as information retrieval and
filtering, natural language processing and bioinformatics.
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