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ABSTRACT

Interactive image search or relevance feedback is the process

which helps a user refining his query and finding difficult tar-

get categories. This consists in a step-by-step labeling of a

very small fraction of an image database and iteratively re-

fining a decision rule using both the labeled and unlabeled

data. Training of this decision rule is referred to as transduc-

tive learning.

Our work is an original approach for relevance feedback

based on Graph Laplacian. We introduce a new Graph Lapla-

cian which makes it possible to robustly learn the embedding

of the manifold enclosing the dataset via a diffusion map. Our

approach is two-folds: it allows us (i) to integrate all the unla-

beled images in the decision process and (ii) to robustly cap-

ture the topology of the image set. Relevance feedback exper-

iments were conducted on simple databases including Olivetti

and Swedish as well as challenging and large scale databases

including Corel. Comparisons show clear and consistent gain

of our graph Laplacian method with respect to state-of-the art

relevance feedback approaches.

Index Terms— Statistical Learning, Graph Laplacian and

Image retrieval.

1. INTRODUCTION

At least, two interrogation modes are commonly known in

content based image retrieval (CBIR); the query by example

and relevance feedback (RF). In the first mode the user sub-

mits a query image as an example of his “class of interest” and

the system displays the closest image(s) using a feature space

and a suitable metric. A slight variant is category retrieval

which consists in displaying images belonging to the “class

of the query”. In the second mode (see the pioneering works

[1, 2]) the user labels a subset of images as positive and/or

negative according to an unknown metric defined in “his

mind”. Then the CBIR system refines a metric and/or a deci-

sion rule and displays another set of images hopefully closing

the gap between the user’s intention and the response(s) of the

CBIR system [3, 4]. This process is repeated until the system

converges to the user’s class of interest. The performance

of an RF system is usually measured as the expectation of

the number of user’s responses (or iterations) necessary to

focus on the targeted class. This performance depends on

the capacity of an RF system (i) to generalize well on the set

of unlabeled images using the labeled ones, (ii) to ask the

most informative questions to the user (see for instance [5])

and (iii) the self-consistency (and consistency) of the user(s)’

responses. Points (i)–(ii) are respectively referred to as the

transduction and the display models. Point (iii) assumes that

different users have statistically the same answers according

to an existing but unknown model referred to as the user

model.

The success of relevance feedback is largely dependent

on how much (1) the image description (feature+similarity)

fits (2) the semantic wanted by the user. The gap between (1)

and (2) is referred to as the semantic gap. The reduction of

this gap basically requires adapting the decision rule and the

features to the user’s feedback. Adapting features might be

explicitly achieved or implicitly as a part of the decision rule

training. When the original sub-features are highly corre-

lated, it is difficult to find dimensions, in the original feature

space, which are clearly discriminant according to the user’s

feedback. This follows when the Gaussian assumption (about

the distribution of the data) does not hold or when the classes

are highly not separable, i.e., the data in original feature

space form a non-linear manifold (see Fig. 1, left). Therefore,

further-processing is required in order to extract dimensions

with high intrinsic variances. A didactic example, shown in

Fig. (1), (the application is searching faces by identity), fol-

lows the statement in [6]: the variance due to the intra-class

variability (pose, illumination, etc.) is larger than the inter-

class variability (identity). Fig. (1) illustrates this principle

where clearly the intra-class variance estimated through the

original feature space (resp. the intrinsic dimensions of the

manifold enclosing the data) is larger (resp. smaller) than the

inter-class variance. Clearly, searching those faces through

the intrinsic dimensions of the manifold is easier than in the

original space. Hence, learning the manifold enclosing the

data is crucial in order to capture the actual topology of the

data.

In this paper, we introduce a new relevance feedback

scheme based on graph Laplacian[7]. We first model the

topology of the image database, including the unlabeled im-

ages, using an eigen approximation of the graph Laplacian,

then we propagate the labels by projecting the whole dataset
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Fig. 1. (Left) This figure shows the distribution of two classes corresponding to two

individuals. It is clear that the intra class variance is larger than the inter class one.

(Right) This is the distribution of the same classes inside the manifold trained using

graph Laplacian. It is clear that the converse is now true and the classification task is

easier in the embedding space.

using a linear operator learned on both the labeled and the

unlabeled sets. The main contributions of this work are:

(i) In contrast to existing relevance feedback methods which

only rely on the labeled set of images, our approach integrates

the unlabeled data in the training process through the clus-

ter assumption [8, 9] (As discussed in Section 3.1). These

unlabeled data turn out to be very useful when only few

labeled images are available since it allows us to favor deci-

sion boundaries located in low density regions of the image

database, which are very often encountered in practice.

(ii) In the second main contribution of this work, we derive

a new from of the graph Laplacian which makes it possible

to embed the dataset in a robust way. This graph Laplacian,

based on diffusion map, captures the conditional probabilities

of transition from any sample to another with a path of a given

length. Its particularity is to only consider the intermediate

paths with high transition likelihoods (see Section 3.2).

In the remainder of this paper, we consider the following

notation. X is a random variable standing for a training sam-

ple taken from X and Y its class label in {+1,−1} (Y = 1 if

the sample X belongs to the targeted class and−1 otherwise).

G = 〈V,E〉 denotes a graph where V is a set of vertices and

E are weighted edges. We use also l, t as indices for itera-

tions. Among terminologies a display is a set of images taken

from the database which are shown to the user at iteration t.
The paper is organized as follows: Section 2 introduces the

overall architecture of the RF process. Section 3 describes

our RF model based on the weighted robust graph Laplacian

and the display model. Section 4 provides an experimental

study using different databases including specific ones; face

databases and also generic databases. We discuss the method

and we conclude in Section 5.

2. OVERVIEW OF THE SEARCH PROCESS

Let S = {X1, ..., Xn}, {Y1, ..., Yn} denote respectively a

training set of images and the underlying unknown ground

truth. Here Yi is equal +1 if the image Xi belongs to the

user’s “class of interest” and Yi = −1 otherwise. Let us con-

sider Dt ⊂ S as the display shown at iteration t and Yt the

labels of Dt. Our interaction consists in asking the user ques-

tions such that his/her responses make it possible to reduce

the semantic gap according to the following steps:

• “Page Zero”: Select a display D1 which might be a ran-

dom set of images or the prototypes found after applying clus-

tering or Voronoi subdivision.

• Reduce the “semantic gap” iteratively (t = 1,..., T ):

(1) Label the setDt using a (possibly stochastic) known-only-

by-the-user function Yt ← L (Dt).
(2) Train a decision function ft : X → {−1,+1} on the (so

far) labeled training set Tt =
⋃t

l=1(Dl,Yl) and the unla-

beled set of images S − ∪t
l=1Dl estimating

argminf :X→{+1;−1} P [f (X) �= Y ].

(3) Select the next display Dt+1 ⊂ S − ⋃t

k=1Dk. Let

fD be a classifier trained on Tt and a display D. The is-

sue of selecting Dt+1 can be formulated at iteration t+1 as

Dt+1 ← argminD:D
T

(
S

t

l=1
Dl) = ∅ P [fD(X) �= Y ].

3. GRAPH LAPLACIAN AND RELEVANCE

FEEDBACK

Graph Laplacian methods emerged recently as one of the most

successful in transductive inference [7], (spectral) clustering

and dimensionality reduction. The underlying assumption is:

the probability distribution generating the (input) data admits

a density with respect to the canonical measure on a sub-

manifold of the Euclidean input space. Let M denote this

sub-manifold and p the probability distribution of the input

space with respect to the canonical measure on M (i.e. the

one associated with the natural volume element dV ). Note

thatM can be all the Euclidean space (or a subset of it of the

same dimension) so that p can simply be viewed as a density

with respect to the Lebesgue measure on the Euclidean space.

3.1. Transductive Learning using the Graph Laplacian

In transductive inference, one searches for a smooth function

f : X → Y from the input feature space into the output

space such that f(Xi) is close to the associated output Yi

on the training set and such that the function is allowed to

vary only on low density regions of the input space. Graph

Laplacian is a tranductive method that we hereafter describe.

It is based on a neighborhood graph in which the nodes are

the input data from both the labeled and unlabeled sets. Let

X1, . . . , Xn denote these data and let K : X × X → R be

a symmetrical non-negative function giving the similarity be-

tween two input points. The typical kernel is the Gaussian

K(x′, x′′) = exp(−‖x′ − x′′‖2/2σ2) and its degree func-

tion is defined as d(x) =
∑n

i=1 K(Xi, x). The kernel K
induces a weighted undirected graph G in which the nodes
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are X1, . . . , Xn and in which any two nodes are linked with

an edge of weight K(Xi, Xj). Let W be the n × n ma-

trix in which the generic element is K(Xi, Xj). Let D be

the diagonal n × n matrix for which the i-th diagonal ele-

ment is d(Xi). The matrix L = D−1W defines the random

walk graph Laplacian where the entry at row i and column j
characterizes the probability of a walk from the node Xi to

Xj . For a given f : X → Y , let F be the vector defined as

Fi = f(Xi). Now, F is obtained by minimizing F tLF under

the constraints Fi = Yi for labeled points.

3.2. Our Robust k-step Graph Laplacian

When embedding a dataset using the one step random walk

graph Laplacian L, the main drawback is its sensitivity to

noise. This comes from short-cuts, when building the adja-

cency graph (or estimating the scale parameter of the Gaus-

sian kernel). Therefore, the actual topology of the manifold

M will be lost (see Fig. 2, left). In [10], the authors con-

sider instead a graph Laplacian based on the power of L:

Lk = Lk−1L. The matrix Lk models a Markovian process

where the conditional k-step transition likelihood (between

two data Xi and Xj) is the sum of the conditional likelihoods

of all the possible (k-1)-steps linking Xi and Xj . This re-

sults into low transition probabilities in low density areas.

Nevertheless, when those areas are noisy, the method fails in

capturing the correct topology (see Fig. 2, middle).

The limitation, mentioned above, motivates the introduc-

tion of a new (called robust) graph Laplacian1, recursively

defined as Lk = [L
1
α

k−1 × L
1
α ]α, (1/α ∈ [1,+∞[). Let

L(i, j)
1
α denote the jth column of the ith row of L

1
α . Again,

L is the one step random walk graph Laplacian where each

entry L(i, j) corresponds to the probability of a walk from Xi

to Xj in one step, also denoted P1(j|i). This quantity charac-

terizes the first order neighborhood structure of the graph G.

In the context of diffusion map[10], the idea is to represent

higher order neighborhood by taking powers of the matrix L,

so Lk(i, j) = Pk(j|i) will be the probability of a walk from

Xi to Xj in k steps. Here k acts as a scale factor and makes

it possible to increase the local influence of each node in the

graph G. The matrix Lk can be inferred from Lk−1 and L
by summing the conditional probabilities over different paths,

i.e., [Pk(j|i)]
1
α =

n∑

l=1

[Pk−1(l|i)]
1
α [P1(j|l)]

1
α .

We refer to a k-path as any path of k steps in the graph

G. Depending on α the general form of the graph Lapla-

cian Lk implements different random walks. When α → 1:

Pk(j|i) is the average transition probability of the k-paths

linking Xi to Xj . So Lk implements exactly the one

in [10] whereas when α → 0: [Pk(j|i)] 1
α converges to

1Without any confusion and in the remainder of this paper, we denote by

Lk this new form of the graph Laplacian.

Fig. 2. The left figures show samples taken from the Swiss roll. (left) A short cut

makes the random walk Laplacian embedding very noise sensitive, clearly the variation

of the color map does not follow the intrinsic dimension of the actual manifold. (mid-

dle) When using the diffusion map, noisy paths affect the estimation of the conditional

probabilities. This issue is overcome in (right) when using the robust diffusion map, as

now the color map varies following the intrinsic dimension.

max
l
{[Pk−1(l|i)]

1
α [P (j|l)] 1

α }, so Lk(i, j) corresponds to

the most likely transition probability of k-steps. In case

α ∈]0, 1[: [Pk(j|i)] 1
α is dominated by the largest terms in

{[Pk−1(l|i)]
1
α [P (j|l)] 1

α }. The effect of noisy terms will

then be reduced. Fig. (2, right) shows an example of the ap-

plication of Lk in embedding of Swiss roll data (k = 10 and

α = 0.2). Clearly, the topology of the data is now preserved.

3.3. Display Model

The data in S are mapped into a manifold M such that any

two elements Xi and Xj in S with close conditional prob-

abilities {Pk(i|.)} and {Pk(j|.)} will also be close in M.

Let Λ be the diagonal matrix of positive eigenvalues of Lk

and Ψ the underlying matrix of eigenvectors. Considering

Lk = ΨtΛΨ, the embedding of a training sample in S is

ψ : Xi �→
(√

λ1 ψ1(Xi), ...,
√

λd ψd(Xi)
)′

. d is the in-

trinsic dimension which corresponds to the largest index l ∈
1, ..., n such that λl > δλ1 for some δ → 0 [10]. The diffu-

sion distance can then be expressed inM as DM(Xi, Xj) =
‖Pk(i|.) − Pk(j|.)‖2 =

∑
l λl [ψl(Xi) − ψl(Xj)]

2. This

distance plays a key role in propagating the labels from the

labeled to unlabeled data following the shortest path or the

average path (depending on the setting of α).

We define a probabilistic framework which, given a subset

of displayed images D1,...,Dt until iteration t, makes it pos-

sible to explore the manifold M in order to propose a subset

of images Dt+1. When we use the unlabeled data by using

a transductive algorithm, the heuristics still rely on the fol-

lowing basic assumption: at each iteration, one can select the

display in order to refine the current estimate of the decision

boundary or one can select the display in order to find un-

charted territories in which the actual decision boundary is

present. The first display strategy exploits our knowledge of

the likely position of the decision boundary while the second

one explores new regions.
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Exploitation: let D ⊂ S and D′ = {X ∈ D, ft(X) > 0},
the next display is Dt+1 ← arg max

D′
P (D′ | Dt, ...,D1).

Assuming the data in Dt+1 are chosen independently:

P (Xj | Dt, ...,D1) ∝ max
Xi ∈ Tt

Yi = +1

1/DM(Xi, Xj)∑
l 1/DM(Xi, Xl)

,

Exploration: equivalently we replace the max with min.

We consider in this work a mixture between the two above

strategies where at each iteration t of the interaction process,

half of the display (of size 8 in practice) is taken from ex-

ploitation and the other set taken from exploration.

4. PERFORMANCE

Experiments were conducted on simple databases : Olivetti

(0.4k images) and Swedish (1, 1k) as well as difficult ones:

Corel (10k). Each face in Olivetti is encoded using 20 coef-

ficients of KPCA while each contour C in the Swedish set is

encoded using 14 eigenvalues of KPCA on C [11]. Images in

the Corel database are encoded simply using 3D RGB color

histograms of 125 dimensions so the classes are very spread

and the RF task is more challenging.

We evaluate the performance of our RF scheme using

the standard recall measure2. We compared our method to

standard representative RF tools including inductive meth-

ods: support vector machines (SVMs), Bayesian inference

(based on Parzen windows) and closely related transductive

ones: graph-cuts. In all these methods, we use the same

display strategy (i.e., combined exploration exploitation). We

train the SVMs and Parzen classifiers using the triangular

kernel as extensive study in [12] showed that SVM based

relevance feedback using the triangular kernel achieved far

better results than other kernels, so we limit our comparison

to SVM and Parzen using this kernel only. Again, for graph

Laplacian, the scale parameter of the Gaussian kernel is set

as σ = EX,X′∈Nm(X){‖X −X ′‖}, hereNm(X) denotes the

set of m nearest neighbors of X (in practice m = 10). The

results reported in Fig. (3), show that in almost all the cases,

the recall performances of RF (using graph-Laplacian) are

better than SVMs, Parzen and graph-cuts based RF. Clearly,

the use of unlabeled data as a part of transductive learning (in

graph Laplacian and graph cuts), makes it possible to improve

the performance substantially. Furthermore, the embedding

of the data through graph Laplacian makes it possible to cap-

ture the topology of the data, so learning the decision rule

becomes easier.

5. CONCLUSION

This work introduces an original approach for RF based on

transductive learning using graph Laplacian. It demonstrates

2This is the fraction of relevant images displayed.
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Fig. 3. Comparison, of the recall performance, of Graph Laplacian with respect to

SVM and Parzen.

clearly that the proposed semi-supervised learning method is

three-edged sword: it is effective in order (1) to handle trans-

ductive learning (in contrast to inductive learning), via the

robust graph Laplacian which implements the clustering as-

sumption and uses the unlabeled data as a part of the training

process (2) to capture the topology of the data so the simi-

larity measure and the propagation of the labels to unlabeled

data is done through the manifold enclosing the data (3) to

achieve a clear and consistent improvement with respect to

the most powerful and used techniques in relevance feedback

including SVMs and Parzen windows.
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